DIVISÃO DE ORIENTAÇÃO TÉCNICA DA EDUCAÇÃO
DE JOVENS E ADULTOS
Leny Angela Zolli Juliani (Diretora)

EQUIPE TÉCNICA DE EJA
Gislane dos Santos Koenig
Ledo Maria Silva Nunes
Rosa Maria Laquimia de Souza

EQUIPE DE APOIO
Hebe Moreira Pastore
Rita da Cássia Burba

ASSESSORIA ESPECIALIZADA
Celi Espasandin Lopes

LEITURA CRÍTICA
Edson do Carmo
Méri Bello Kooro

PROJETO GRÁFICO
Ana Rita da Costa
Joseane A. Ferreira

CAPA
Ana Rita da Costa
Katia Marinho Hembik

EDITORAÇÃO
Joseane A. Ferreira

REVISÃO
Sidoni Chamoun

AGRADECIMENTO
Aos professores que participaram dos “Encontros de Reflexão e Aprofundamento das Orientações Curriculares para a EJA”.

Dados Internacionais de Catalogação na Publicação (CIP)
São Paulo (SP). Secretaria Municipal de Educação.

CDD
Caro Professor

Apresentamos a você o **Caderno de Orientações Didáticas para a Educação de Jovens e Adultos**, que é parte do Programa de Orientação Curricular do Ensino Fundamental, da Secretaria Municipal de Educação.

Trata-se de mais um recurso didático que tem o objetivo de subsidiar o seu trabalho docente e contribuir para o seu desenvolvimento profissional.

Considerando esse princípio, as expectativas de aprendizagem definidas nas Orientações Curriculares foram analisadas, revisadas e ajustadas para oferecer a você um conjunto de indicações para o aprimoramento da prática docente.

Elaborado por professor especialista e coordenado pela Diretoria de Orientação Técnica, o presente documento é também fruto de trabalho realizado com um grupo de professores da EJA que, ao longo do processo, participaram de encontros na Secretaria Municipal de Educação, onde puderam discutir, comentar e sugerir formas de apresentação dos tópicos abordados que pudessem contemplar seus anseios.

O resultado deste trabalho chega agora às mãos de todos os professores da EJA, com a finalidade de fortalecer nosso compromisso de oferecer formação de qualidade para os jovens e os adultos da cidade de São Paulo.

Alexandre Alves Schneider
Secretário Municipal de Educação
ORIENTAÇÕES DIDÁTICAS PARA EJA
Matemática
SUMÁRIO

1. Introdução ... 10

2. EJA – Modalidade específica da educação escolar .. 14
 2.1 As funções da EJA .. 16
 2.2 Organizando a EJA como modalidade específica da educação escolar 19
 2.3 Conteúdos escolares e aprendizagem na EJA ... 20

3. Fundamentos da área de matemática para o ensino de jovens e adultos – EJA .. 24
 3.1 A educação matemática na EJA ... 26
 3.1.1 Dimensão cultural .. 29
 3.1.2 Dimensão social ... 31
 3.1.3 Dimensão formativa .. 32
 3.1.4 Dimensão política .. 33

4. Eixos estruturantes do ensino de matemática .. 36
 4.1 Números e operações .. 38
 4.2 Medidas .. 39
 4.3 Geometria .. 40
 4.4 Análise de dados e Probabilidade .. 41

5. Expectativas de aprendizagem .. 44
 5.1 Etapa Complementar .. 44
 5.1.1 Números e operações ... 44
 5.1.2 Medidas ... 45
 5.1.3 Geometria .. 45
 5.1.4 Análise de dados e Probabilidade ... 45
 5.2 Etapa Final ... 46
 5.2.1 Números e operações ... 46
6. Explorações didáticas

6.1 História da matemática e contextualização

6.2 Resolução de problemas e aulas investigativas

6.3 Modelagem matemática e o trabalho com projetos

6.4 Tecnologias

6.5 Leitura e escrita

7. Fundamentos e princípios da avaliação na EJA

7.1 Definição e limites da avaliação

7.2 Finalidades e objetivos da avaliação

7.3 Critérios de avaliação

7.4 Fundamentos do processo avaliativo

7.5 Imparcialidade e independência

8. Considerações finais

9. Referências

10. Referências para trabalho didático e formação

 10.1 Sites

 10.2 Recomendações bibliográficas

 10.2.1 Livros

 10.2.2 Periódicos

 10.3 Espaços para formação contínua

 10.4 Indicações de cursos de Pós-Graduação
ORIENTAÇÕES DIDÁTICAS PARA EJA Matemática
1. INTRODUÇÃO

Celi Espasondin Lopes

A resolução CNE/CEB Nº 1, DE 5 DE JULHO DE 2000, estabelece as Diretrizes Curriculares Nacionais para a Educação de Jovens e Adultos, destacando a importância de considerar as situações, os perfis e as faixas etárias dos estudantes. Salienta que a EJA precisa reparar a dívida histórica e social relacionada a uma parte da população brasileira, que teve negado o direito à educação; possibilitar seu reingresso no sistema educacional, oferecendo-lhe melhoria nos aspectos sociais, econômicos e educacionais; e buscar uma educação permanente, diversificada e universal.

De acordo com essas diretrizes, a EJA deve pautar-se pelos princípios de equidade, diferença e proporção, propondo um modelo pedagógico próprio, de modo a assegurar:

• a distribuição específica dos componentes curriculares, a fim de propiciar um patamar igualitário de formação e restabelecer a igualdade de direitos e de oportunidades diante do direito à educação;

• a identificação e o reconhecimento da alteridade, própria e inseparável, dos jovens e dos adultos em seu processo formativo, da valorização do mérito de cada qual e do desenvolvimento de seus conhecimentos e valores;

• a proporcionalidade, com disposição e alocação adequadas dos componentes curriculares às necessidades próprias da Educação de Jovens e Adultos, com espaços e tempos nos quais as práticas pedagógicas assegurem aos seus estudantes identidade formativa comum aos demais participantes da escolarização básica.

Considerando essas proposições, a Secretaria Municipal de Educação de São Paulo, no âmbito da Diretoria de Orientação Técnica – Divisão de Orientação Técnica da Educação de Jovens e Adultos (SME/DOT/EJA), está implementando os Cadernos de Orientações Didáticas.

O objetivo é que subsidiem o processo de discussões e reflexões sobre a prática pedagógica na EJA, considerando o que os estudantes têm o direito de aprender em cada área do conhecimento e orientando sobre quais práticas docentes podem efetivar
essa aprendizagem. Almeja-se construir coletivamente uma proposta curricular que atenda às finalidades e às necessidades da EJA.

A finalidade deste documento é orientar a organização curricular da Educação de Jovens e Adultos na Rede Municipal de Ensino, tendo como ponto de partida as Expectativas de Aprendizagem, as quais vêm sendo discutidas com os educadores.

Desses debates, emerge a necessidade de organizar e aprimorar os projetos pedagógicos da EJA, considerando as particularidades e as contribuições de cada área do conhecimento para a formação dos estudantes e para o atendimento às potencialidades e dificuldades destes no processo de ensino e aprendizagem.

Busca-se oferecer aos educadores da Educação de Jovens e Adultos subsídios teóricos e metodológicos que os auxiliem nos desafios de seu cotidiano, considerando que essa modalidade de ensino visa superar os processos de exclusão e marginalização social daqueles que estiveram distantes de um processo educacional.

Na elaboração desta proposta, optou-se por manter um olhar que segue a lógica disciplinar de organização da educação escolar de Ensino Fundamental, assumindo que, não obstante suas limitações conhecidas, é a forma como os professores e os alunos percebem a organização do conhecimento e a aprendizagem. Contudo, é sempre recomendável que a prática pedagógica avance em direção à proposta de trabalho e que busque incorporar conteúdos que estão além de cada disciplina e são importantes à vida do jovem e do adulto, como as questões de identidade e expressão cultural; sociedade, ambiente e desenvolvimento; participação e política; sexualidade, etc.

Ademais, há que considerar, na implantação da proposta e no desenvolvimento dos conteúdos, os saberes, os valores e a forma de relacionar-se com o conhecimento e com a cultura de cada estudante e do grupo como um todo. Toda aprendizagem se faz necessariamente em função da leitura de mundo (isto é, da forma como se experimenta e se pensa a vida objetiva). A desconsideração disso, algo que infelizmente é frequente, é um fator essencial de insucesso.

Assim, estes cadernos marcam o início de uma transformação no processo educacional da EJA na cidade de São Paulo, o que requer o comprometimento dos educadores para que se efetive. Espera-se que este documento seja uma contribuição para o desenvolvimento de uma educação envolvida com os alunos e sua comunidade.
ORIENTAÇÕES DIDÁTICAS PARA EJA

Matemática

CIEJA Freguesia / Brasilândia
Foto: Neila Gomes
ORIENTAÇÕES DIDÁTICAS PARA EJA
Matemática

CAPÍTULO 2
2. EJA – MODALIDADE ESPECÍFICA DA EDUCAÇÃO ESCOLAR

Luiz Percival Leme Britto

A educação de adultos vem se realizando no Brasil há pelo menos um século, com ênfase na alfabetização. Nos anos 90 do século passado, introduziu-se o conceito de educação de jovens e adultos, incorporando a reflexão que vinha se fazendo no âmbito da educação popular.

No mais das vezes, contudo, o debate sobre a EJA (principalmente quando se considera a questão da alfabetização) não se prende à educação escolar propriamente dita. Ainda que a aprendizagem da leitura e da escrita se faça principalmente por meio da escola, a alfabetização de adultos guarda uma relação relativamente vaga com os procedimentos escolares, e se fez e se faz, mais frequentemente, independentemente, por meio de campanhas públicas de iniciativa estatal ou de ações educativas de organizações sociais.

Conforme indicam diversos autores, o núcleo intelectual e político da Educação de Adultos sustentou-se à revelia da escola “regular”, quando muito constituindo programas paralelos, os quais deviam alcançar o estatuto de correspondência aos níveis escolares formalmente estabelecidos.

Do ponto de vista do conteúdo e da metodologia de ensino, em função da crítica aos valores hegemônicos que se afirmavam pela educação escolar, firmou-se a noção de que os conhecimentos adquiridos na vida prática, independentemente, portanto, da eventual experiência escolar, deviam ser considerados e avaliados como tão importantes quanto o saber transmitido pela escola.

Estabeleceu-se, ademais, um consenso (se não na prática, certamente no núcleo teórico da EJA) de que os tempos e os ritmos de aprendizagem do adulto são distintos daqueles que se propõem para crianças e púberes e que, portanto, tanto os conteúdos a serem trabalhados, como os tempos e os métodos de ensino deveriam ter perfis próprios.

A educação escolar de jovens e adultos propriamente (EJA) só viria a consolidar-se recentemente, inicialmente nos anos de 1960 com os exames de madureza, depois com os supletivos e, finalmente, já nos anos de 1990, em função da Nova LDB, com a institucionalização da EJA no âmbito das secretarias municipais e estaduais de educação, com a oferta regular dessa modalidade pelas escolas de Ensino Fundamental e Médio.
Além disso, surgiram várias iniciativas de grupos que tradicionalmente atuavam com a EJA, de realizar programas especiais que respondessem às demandas e necessidades específicas da população adulta e jovem de pouca escolaridade.

A realidade de uma EJA especificamente escolar fez com que o Conselho Nacional de Educação, considerando as determinações legais, se visse na obrigação de estabelecer um referencial mais preciso sobre as possibilidades de oferta.

Contudo, apesar de muitos avanços políticos e pedagógicos na forma de compreender e oferecer educação escolar de adultos, verifica-se ainda a forte tendência de reproduzir no âmbito da EJA os modelos de educação característicos da escola de crianças e púberes, ignorando as especificidades do alunado da EJA e as instruções normativas de organização dessa modalidade.

A expansão e o sucesso da EJA como modalidade escolar, no entanto, impõe que, seguindo o que orienta o Conselho Nacional de Educação através do parecer 11/2000, de autoria do Conselheiro Jamil Cury, considere-se a EJA não como a simples reprodução resumida e aligeirada, mas como modalidade específica da educação escolar.

Tal decisão não faz mais que seguir as instruções maiores. Determina o CEB/CNE, pelo parecer nº 11/2000, que a EJA, de acordo com a Lei nº 9.394/96, passando a ser uma modalidade da educação básica nas etapas do ensino fundamental e médio, usufrui de especificidade própria que, como tal, deveria receber um tratamento consequente. (grifos acrescidos)

Isto implica estabelecer processos e tempos de ensino, bem com conteúdos e métodos que considerem o perfil do aluno, suas formas de relacionar-se com o conhecimento e de atuar e viver na sociedade.

Não se trata de negar a referência fundamental da educação escolar. O parecer desde logo adverte que, “sendo a EJA uma modalidade da educação básica no interior das etapas fundamental e média, é lógico que deve se pautar pelos mesmos princípios postos na LDB.” Ademais disso, “no que se refere aos componentes curriculares dos seus cursos, ela toma para si as diretrizes curriculares nacionais destas mesmas etapas exaradas pela CEB/CNE”. (grifos acrescidos)

O que se deve é reconhecer que o “caráter lógico não significa uma igualdade direta quando pensada à luz da dinâmica sócio-cultural das fases da vida” e que “a faixa etária, respondendo a uma alteridade específica, se torna uma mediação significativa para a re-significação das diretrizes comuns assinaladas”. (grifos acrescidos)

Há que destacar que os fundamentos acima assinalados recorrem evidentemente do reconhecimento de que, independentemente de haver diversas
formas de aprender e de ascender ao conhecimento na sociedade moderna, caracterizada pela multiplicidade de instâncias formativas e informativas, a educação escolar é a forma de educação mais organizada e elevada de acesso ao conhecimento e à cultura, sendo sua função precípua a formação geral do cidadão; com ênfase, por um lado, nas letras, na matemática, nas ciências e nas artes e, por outro, na formação política e profissional.

De fato, a educação escolar representa, em relação à educação extra-escolar, a forma mais desenvolvida e mais avançada de educação, de maneira que, reconhecendo que é a partir do mais desenvolvido que se compreende o menos desenvolvido, deve-se assumir que é pela escola e por aquilo que nela se pode aprender que se compreende a educação em geral.

Por isso, há que reafirmar que a aprendizagem, no âmbito da Educação Escolar, implica explicitações do estágio atual de conhecimento e o esforço sistemático de sua superação, pelo reconhecimento de valores, dos modos de ser e das visões de mundo predominantes; e que o que se vive e se aprende na escola não pode ser a simples reprodução do que se vive e se aprende fora dela.

Nessa perspectiva, a finalidade fundante da Educação Escolar é oferecer condições de a pessoa dar conta da complexidade do mundo e de nele intervir, por um lado conhecendo e compreendendo as formas de produção da cultura e do conhecimento (saber teórico) e, por outro, relacionando-se com propriedade com as formas de ser contemporâneas (saber pragmático).

Enfim, como determina o parecer, a EJA deve ser considerada “um momento de reflexão sobre o conceito de educação básica que preside a organização da educação nacional em suas etapas. As necessidades contemporâneas se alargaram, exigindo mais e mais educação, por isso, mais do que o ensino fundamental, as pessoas buscam a educação básica como um todo.”

2.1 As funções da EJA

O parecer CEB/CNE nº 11/2000 não se limita a reconhecer a especificidade da EJA como modalidade de educação escolar de nível fundamental e médio. O Conselho também, reconhecendo que a EJA “representa uma dívida social não reparada para com os que não tiveram acesso a e nem domínio da escrita e leitura como bens sociais, na escola ou fora dela, e tenham sido a força de trabalho empregada na
constituição de riquezas e na elevação de obras públicas”, indica suas funções, a saber: reparadora, equalizadora, qualificadora.

A **função reparadora** parte do reconhecimento não “só o direito a uma escola de qualidade, mas também da igualdade ontológica de todo e qualquer ser humano”. Nesse sentido, a educação escolar devidamente estruturada é a oportunidade objetiva de os jovens e adultos participarem da escola desde uma “alternativa viável em função das especificidades sócio-culturais destes segmentos para os quais se espera efetiva atuação das políticas sociais.”

Por isso, para que a função reparadora se efetive, o parecer considera que “a EJA necessita ser pensada como um **modelo pedagógico próprio a fim de criar situações pedagógicas e satisfazer** necessidades de aprendizagem de jovens e adultos.” (grifo no original)

A **função equalizadora** considera que “o indivíduo que teve sustada sua formação, qualquer tenha sido a razão, busca restabelecer sua trajetória escolar de modo a readquirir a oportunidade de um ponto igualitário no jogo conflitual da sociedade.”

Assumindo a possibilidade de um padrão social em que todos disponham das mesmas condições de acesso a conhecimento, a EJA manifesta-se como “uma promessa de efetivar um caminho de desenvolvimento de todas as pessoas, de todas as idades”, de modo que “adolescentes, jovens, adultos e idosos atualizem conhecimentos, mostrem habilidades, troquem experiências e tenham acesso a novas regiões do trabalho e da cultura.”

A **função qualificadora** é considerada pelo parecer como o “próprio **sentido** da EJA”. (grifo no original). Seu fundamento está na assunção definitiva do “caráter incompleto do ser humano cujo potencial de desenvolvimento e de adequação pode se atualizar em quadros escolares ou não escolares.”

Nessa perspectiva, a EJA assume, como postulam as reflexões mais atuais sobre ela realizadas em nível mundial, um caráter de “educação permanente e criação de uma sociedade educada para o universalismo, a solidariedade, a igualdade e a diversidade”. Daí o imperativo de reconhecer que “os termos **jovens e adultos** indicam que, em todas as idades e em todas as épocas da vida, é possível se formar, se desenvolver e constituir conhecimentos, habilidades, competências e valores que transcendam os espaços formais da escolaridade e conduzam à realização de si e ao reconhecimento do outro como sujeito.”

Ademais, o parecer observa que esta função deve ser percebida como “um apelo para as instituições de ensino e pesquisa no sentido da produção adequada de material didático que seja permanente enquanto processo, mutável na variabilidade de conteúdos
e contemporânea no uso de e no acesso a meios eletrônicos da comunicação.”

Não há dúvida de que, em certa medida, as funções identificadas para a EJA também se aplicam à educação escolar de crianças e púberes, principalmente as duas últimas.

Afinal, “caráter incompleto do ser humano” e a decorrente necessidade do ampliar as potências individuais e sociais é fundamento essencial da escola e coincide com a assunção feita acima de que cabe a esta instituição a formação geral do cidadão, desde a mais tenra idade e que a educação para a vida inteira inicia na infância. Isso apenas vem reforçar a forte aliança entre as diferentes modalidades de ensino.

No entanto, a forma como se dá o processo de ensino-aprendizagem e como se define a relação que se estabelece entre sujeito e escola são completamente distintas. Se a criança “cresce” com e na escola, encontrando nela um lugar fundamental de identidade, manifestando-se uma relação direta entre idade e série escolar.

 Já para o jovem e o adulto, não há tal progressão, de modo que o aluno entra em qualquer tempo e no nível que lhe for mais apropriado (o que tem importantes implicações para os programas, metodologias e avaliações). Tampouco há a obrigatoriedade legal de o aluno frequentar a escola, resultando sua adesão do entendimento da importância da escola. Ademais, tanto os conhecimentos de que dispõe como os que lhe são pertinentes são distintos dos das crianças e púberes.

Vejam-se dois exemplos bastante esclarecedores.

A percepção do lugar e de sua presença nele é completamente distinta para uma criança e para um adulto, mesmo que este não tenha escolaridade nenhuma. As perguntas Onde estou? Que lugar é esse? Como ele se articula com outros lugares? são percebidas e respondidas diferentemente por uma pessoa que está a descobrir-se no mundo e na sociedade e por outra que viveu a experiência de localizar-se. Assim, apresentar a uma criança as dimensões da espacialidade e do território no mundo e na história pressupõe um movimento de descoberta de si e da vida e, de alguma forma, já foi realizado pelo adulto. Daí porque os conteúdos e o tratamento dados a ele no que concerne a este objeto devem necessariamente ser distintos.

A mesma e radical diferença se percebe quando se consideram conhecimentos do corpo e da saúde. O adulto e o jovem adulto vivem sua corporeidade, sua saúde e sua sexualidade de forma completamente distinta da criança e têm valores e saberes igualmente diferenciados. Mesmo que muitas vezes recortados por percepções equivocadas ou parciais da saúde e da sexualidade, o fato é que os adultos dispõem de um conhecimento objetivo, de uma experiência e de uma percepção sobre isso, e qualquer programa educativo deve partir dessa realidade. Aliás, a intensidade mesma
com que se trata do tema deve ser distinta. O adulto deve saber inclusive da saúde da criança para poder cuidar dela.

Enfim, os alunos de EJA dispõem, em níveis variados, de um amplo universo de conhecimentos práticos e concepções relativamente cristalizadas dos diversos aspectos da realidade social e natural. Além disso, têm compromissos e responsabilidades definidos que os ocupam e os movem, bem como modelos de mundo, estratégias de compreensão de fatos e de avaliação de valores densamente constituídos, de forma que novas incorporações devem promover compreensões mais amplas.

2.2 Organizando a EJA como modalidade específica da educação escolar

Do que se apresentou até aqui, pode-se assumir com segurança que, “mesmo considerando-a como parte do sistema, deve ter conteúdos e metodologias próprias”. (Parecer CEB n. 11/2000)

Nesse sentido, a EJA, enquanto modalidade da Educação Básica e reconhecendo os sujeitos que participam dela, a concretude de suas vidas e as formas como interagem com o conhecimento, deve criar as condições de superação do lugar em que se encontram, contribuir para que os estudantes da EJA, na problematização da vida concreta, adquiram conhecimento e procedimentos que contribuam para a superação das formas de saber cotidiano.

Isso implica:

- Considerar as diretrizes nacionais, inclusive no que concerne aos componentes curriculares e seus conteúdos.
- Organizar-se segundo suas características e necessidades.
- Buscar as mediações apropriadas.
- Considerar o conhecimento prévio e a experiência adquiridos dos alunos.

Contudo, mesmo reconhecendo que a educação não ocorre no abstrato, independentemente dos modos objetivos e concretos de vida social e coletiva, há que cuidar, contudo, para não banalizar o processo educativo, limitando-o a um pragmatismo que submeteria a EJA apenas às demandas de conhecimento imediato em função das necessidades da vida cotidiana.
É necessário ter sempre presente que a “leitura do mundo” – como cunhou Paulo Freire a expressão do saber adquirido na vida vivida – se amplia com a leitura da palavra, à medida que a pessoa ou o grupo reconsidera seus olhares, suas experiências e seus valores, em função de sua interação com novos conhecimentos.

Paulo Freire explicitava, sempre, que a educação não ocorre no abstrato, de forma independente dos modos objetivos e concretos de vida social e coletiva. A leitura do mundo e a leitura da palavra, essencial para a expansão daquela na sociedade letrada, se ampliam à medida que a pessoa ou o grupo reconsidera seus olhares, suas experiências e seus valores em função de sua interação com novos conhecimentos.

A incorporação desta perspectiva de educação contribuiu para a redefinição da atribuição de responsabilidades e significou importantes rearranjos nas propostas pedagógicas, em função da compreensão dos valores, objetivos e conteúdos constitutivos da educação escolar.

Contudo, a interpretação ingênua da lição de Freire tem contribuído para a supervalorização de saberes e valores característicos do senso comum (entendido como aquilo que é próprio dos indivíduos e de suas experiências, fruto da experiência imediata com o mundo material), implicando a desvalorização – em alguns casos, a negação – do conhecimento formal como elemento essencial de compreensão da realidade.

A educação formadora impõe o diálogo constante com as referências culturais dos alunos, que se realizam por sua interação com saberes e valores constituídos historicamente de modo que o reconhecimento da necessidade do diálogo não significa, em absoluto, que a questão pedagógica se concentre na elaboração de um novo método para ensinar conteúdos tradicionais nem na submissão às formas de divulgação e reprodução do fato midiático.

2.3 Conteúdos escolares e aprendizagem na EJA

É já sobejamente reconhecido que os alunos de EJA dispõem, em níveis variados, de um amplo universo de conhecimentos práticos e concepções relativamente cristalizadas dos diversos aspectos da realidade social e natural. Ademais, têm compromissos e responsabilidades bem definidos que os ocupam e os movem.

Tal assunção, extremamente necessária na concepção e realização da EJA, não permite supor que a pessoa jovem ou adulta aprenda mais rapidamente que as crianças; aprende, sim, diferentemente, em função de seu quadro de referências e formas de se pôr e perceber o mundo.
É absolutamente fundamental o reconhecimento de que os tempos e formas de aprendizagem do jovem e adulto são diferentes dos das crianças e púberes, tanto pela conformação psíquica e cognitiva como pelo tipo de inserção e responsabilidade social.

Isto significa reconhecer que os adultos, em função do já-vivido, têm modelos de mundo, estratégias de compreensão de fatos e de avaliação de valores densamente constituídos, de forma que toda nova incorporação conduz a compreensões mais amplas e, eventualmente, difíceis de realizarem.

Disso decorre que os conteúdos escolares da EJA, considerando aquilo que estabelecem as diretrizes curriculares nacionais, devem ser reorganizados em função do lugar social, político e histórico em que as pessoas se encontram.

Mais ainda, advirta-se que assumir as limitações e equívocos da educação convencional e dos processos de ensinar e aprender deste modelo não implica postular que a solução esteja em algum modelo que, negando o conhecimento, valorize os processos de simples ajustamento ao sistema produtivo.

Uma educação que corresponda às necessidades e interesses dos trabalhadores deve tomar por referência a realidade objetiva em que vivem os alunos, não apenas em sua imediaticidade, mas também naquilo que implica a superação da condição em que vivem.

O desafio que se põe é de, reconhecendo os sujeitos que dela participam, bem como a concretude de suas vidas e as formas como interagem com o conhecimento, criar as condições de superação do lugar em que se encontram.

Trata-se de, pela ação educativa, contribuir para que estes alunos – sujeitos plenos de direito – possam, na problematização da vida concreta, adquirir conhecimentos e procedimentos que contribuam para a superação das formas de saber cotidiano.

Isto se faz pelo deslocamento do lugar em que se costuma estar, para, tomando como estranho o que é familiar, ressignificar o real, entendido não como o absoluto em si, mas sim como o resultado da produção histórica do conhecimento.

Nessa direção, a educação de adultos não pode ser pensada como recuperação de algo não aprendido no momento adequado e, tampouco, deve seguir os critérios e referenciais da educação regular de crianças e adolescentes.

O adulto não volta para a escola para aprender o que deveria ter aprendido quando criança. Para além do legítimo desejo de reconhecimento social, ele busca a escola para aprender conhecimentos importantes no momento atual de sua vida, conhecimentos que lhe permitam “desenvolver e constituir conhecimentos, habilidades, competências e valores que transcendam os espaços formais da escolaridade e conduzam à realização de si e ao reconhecimento do outro como sujeito.” (Parecer CNE 11/2000)
CAPÍTULO 3
3. Fundamentos da área de matemática para o ensino de jovens e adultos - EJA

A ciência matemática é a parte de uma cultura que se tem definido como o conjunto de conceitos em termos dos quais uma população atua e pensa. Quando utilizada como linguagem e ferramenta de pensamento, constitui-se em indicador cultural.

Uma das principais utilidades da matemática é modelar os fenômenos do contexto com o fim de reduzir a incerteza e aumentar a capacidade de predição, pois, desse modo, as pessoas se sentem mais seguras e suas relações com o meio são mais estáveis.

Dessa forma, esta ciência ocupa posição de destaque no mundo científico. Muitos filósofos e cientistas consideram-na a mola-mestra do saber, disciplina imprescindível para a aprendizagem de outras e para a formação do pensamento lógico do indivíduo.

A matemática é expressão da mente humana, a qual reflete a vontade ativa, a razão contemplativa e o desejo da perfeição estética. E tem como elementos básicos a lógica, a intuição, a análise, a construção, a generalidade e a individualidade (COURANT; ROBBINS, 2000).

A matemática constitui-se, então, em patrimônio cultural da humanidade e um modo de pensar. A sua apropriação é direito de todos.

Neste sentido, é impensável não proporcionar a todos a oportunidade de aprender matemática de modo realmente significativo, do mesmo modo que é inconcebível eliminar da escola básica a educação literária, científica ou artística.

Isto implica que todas as crianças e jovens devem ter possibilidade de contatar, em nível apropriado, com as ideias e os métodos fundamentais da matemática e de apreciar o seu valor e a sua natureza.

Ao considerar a matemática escolar, muitas vezes assume-se ser ela uma disciplina isenta de cultura. Embora em suas origens estivesse estreitamente vinculada à vida cotidiana, a matemática – acadêmica ou escolar – tem sido valorizada em uma perspectiva distante da maioria das pessoas.
Isso é um grande equívoco, fruto de uma lógica perversa em qualquer nível de ensino e, particularmente, na Educação de Jovens e Adultos, pois a cultura reflete as práticas de um grupo de pessoas as quais interagem e se comunicam, compartilhando relações entre conceitos as quais constituem saberes construídos conjuntamente.

A educação matemática é parte dos valores da matemática e dos valores da sociedade na qual se desenvolve como instituição cultural e, portanto, um direito básico de todas as pessoas, por ser uma resposta às necessidades individuais e sociais.

Todos precisam desenvolver suas capacidades e preferências, bem como interpretar as mais variadas situações e tomar decisões fundamentadas relativas à sua vida pessoal, social ou familiar.

A educação matemática pode contribuir de modo significativo e insubstituível, para ajudar a toda e qualquer pessoa a tornar-se indivíduo não dependente, crítico e confiante nos aspectos essenciais em que a sua vida se relaciona com a matemática.

Isto significa que todas as crianças, jovens e adultos devem desenvolver a sua capacidade de usar a matemática para analisar e resolver situações problemáticas, para raciocinar e comunicar, assim como a autoconfiança necessária para fazê-lo.

Os processos educativos devem considerar a necessidade de educar a todos seus membros para que participem nos debates sobre o desenvolvimento e a sustentabilidade da democracia e da liberdade nos espaços sociais.

Nesse sentido, a matemática como linguagem universal contribui para que as pessoas sejam capazes de fundamentar seus argumentos com lógica e coerência. Dessa forma, a educação matemática possibilita às pessoas estabelecer relações entre os diferentes aspectos que fazem parte de seu contexto e de sua cultura, analisando criticamente a diversidade presente na realidade em que vivem.

Pensar a Educação Matemática para todos é reconhecer a importância e a necessidade de adquirir e promover um conhecimento matemático consistente em compreensão e inter-relação.

A educação matemática democrática, defendida nesta proposta, busca caminhos que favoreçam a integração diante da discriminação, de forma a desenvolver o pensamento crítico no processo de análise dores as injustiças sociais, as desigualdades e os conflitos interétnicos.

Nessa perspectiva, a educação matemática se converte em uma instituição social, superando o status de disciplina científica e assumindo a dimensão da educação

Diante desse pressuposto, a perspectiva teórica adotada é a sociocultural, a qual considera o processo de ensino e a aprendizagem da Matemática com ênfase nos contextos social e cultural da aprendizagem, ressaltando a interação no processo de construção coletiva do conhecimento.

Tal perspectiva da educação matemática crítica faz-se norteadora da prática docente dos professores matemáticos na EJA. É uma concepção decorrente da perspectiva freireana de educação, na qual o diálogo é essencial no processo de ensino e aprendizagem.

Também se deve considerar que toda atividade humana é mediada por tecnologias e por ferramentas que se fazem presentes no contexto cultural, mediando indagações, reflexões e sistematizações presentes no processo de aquisição de conhecimento matemático.

3.1 A Educação Matemática na EJA

Ao pensar a implementação de uma proposta de Educação Matemática na EJA, considera-se o pressuposto de que o professor é um profissional com capacidade de decisão e comprometido socialmente com a melhoria cultural do meio em que trabalha; portanto, é fundamental que participe, quando possível, das discussões sobre as orientações curriculares; por isso, anteriormente à redação deste documento, houve alguns encontros com professores e coordenadores da EJA.

Os professores, nesta modalidade de ensino, precisam dialogar com seus alunos sobre o processo de ensino e aprendizagem e sobre os conteúdos a serem priorizados durante as aulas. Na EJA, essa interação torna-se extremamente fundamental, uma vez que o aluno jovem e adulto é um cidadão apto a debater e apresentar sugestões que contribuam para constituição de um currículo que atenta às suas expectativas, bem como às demandas do mundo do trabalho. Sendo assim, a cooperação e a realidade cultural nas quais os estudantes estão inseridos devem nortear a implementação dessas orientações.
A partir dessas considerações, seria recomendável que todos os representantes dos diversos segmentos da comunidade escolar fossem convocados a assumir-se como sujeitos de aprendizagem e ensino em uma relação de reciprocidade constante e contínua.

O processo de ensino e aprendizagem de matemática na EJA deve incorporar à prática pedagógica conceitos, procedimentos e atitudes relativos ao conhecimento matemático e desenvolvidos em meio às vivências dos alunos, os quais emergem em suas interações sociais, experiências pessoais e profissionais e integram sua cultura.

Dessa maneira, é necessário incorporar à educação matemática os conhecimentos e procedimentos construídos e adquiridos nas leituras que esses jovens e adultos fazem do mundo e de sua própria ação nele, de maneira a expandir e diversificar as suas práticas de leitura do mundo, possibilitando o acesso democrático à cultura letrada (FONSECA, 2002a, p. 59).

A EJA tem como princípio fundamental a formação do aluno, possibilitando o acesso à cultura e ao conhecimento científico. Nessa perspectiva, traçou-se a concepção de formação matemática que se faz necessária aos alunos deste nível de ensino.

É preciso considerar que o aluno da EJA, apresenta uma condição escolar que é, muitas vezes, fruto da exclusão social, tem experiências, participa do mundo do trabalho e, apesar de ter pouca ou nenhuma escolaridade, tem experiência de vida, tem um conhecimento próprio que possibilita sua sobrevivência.

Assim, a EJA deve possibilitar a esse aluno instrumentos para que possa exercer sua cidadania de forma crítica e participativa, desenvolvendo capacidades para ler, reconhecer e interpretar o mundo à sua volta. Para tanto, a matemática tem papel fundamental, pois tem relação com outras ciências, e é um conhecimento que foi socialmente construído.

A matemática é uma ciência viva, dinâmica, produto histórico, social e cultural. O conhecimento matemático acumulado construiu-se a partir da solução de problemas que ocorreram durante a história da humanidade, atendendo às necessidades do homem ao longo do seu processo de transformação e desenvolvimento.

À medida que toma conhecimento da História da Matemática, o aluno da EJA entende a necessidade e importância da matemática, deixando de vê-la como algo "inventado", compreendendo-a como requisito básico para a evolução da ciência e da tecnologia. Ciência e tecnologia que estão em movimento, e cujo acesso é direito de todos.
Além de reconhecer o processo histórico, o aluno da EJA deve ser sujeito ativo na construção do próprio conhecimento. Cabe ao professor ser o mediador nesse processo, tendo sensibilidade suficiente para reconhecer e respeitar o conhecimento prévio do aluno, suas necessidades e diferenças explicitadas no processo de ensino e aprendizagem da matemática.

Fonseca (2002), ao suscitar uma reflexão sobre a busca do sentido do ensinar e aprender Matemática na EJA considera que "a busca do sentido do ensinar-e-aprender Matemática seria, pois, uma busca de acessar, reconstituir, tornar robustos, mas também flexíveis os significados da Matemática que é ensinada-e-aprendida". (FONSECA, 2002b, p. 3).

As manifestações dos estudantes devem ser geradoras de situações-problema. Eles, cada um à sua maneira, resolverão os problemas e as questões elaboradas ou apresentadas. Ao professor cabe a função de fazer o elo desse conhecimento do cotidiano (informal) com o conhecimento científico (formal).

A educação matemática é instrumento para essa transposição, devendo fornecer subsídios para que os alunos se tornem indivíduos independentes, competentes, críticos e confiantes nos aspectos relacionados à Matemática. Deve subsidiar e promover o desenvolvimento cognitivo dos estudantes, possibilitando-lhes adquirir capacidades para analisar e resolver situações problemáticas, seja no contexto escolar, seja no cotidiano de suas vidas.

A aquisição do conhecimento matemático não se inicia, para o aluno adulto, quando ingressa num processo formal de ensino. A aprendizagem já vem se dando durante todo o decorrer de sua vida. A pessoa excluída da escolarização é obrigada, no confronto com suas necessidades cotidianas, a adquirir um saber que lhe possibilite a superação de desafios.

O ensino da matemática deve, então, favorecer o desenvolvimento do pensamento e raciocínio lógico, estabelecendo comparações, relações, regularidades e coerências que despertam a curiosidade, promovendo a aquisição de conceitos que ampliam a capacidade de raciocinar, prever, generalizar, projetar, abstrair e tomar decisões, elevando a autoestima e, consequentemente, a qualidade de vida dos alunos.

A disciplina deve ser instrumento de investigação e conhecimento da realidade da cultura e da sociedade, presente nas diversas situações na vida das pessoas, sem se restringir à aplicação de problemas práticos do cotidiano. Deve ser um meio que permite produzir, interpretar, comunicar e interagir conhecimentos de diversas áreas (ciências, química, física).
...
como qualquer outro domínio do conhecimento humano. Seu conjunto de práticas e de realizações conceptuais está sempre ligado a contextos sociais e históricos concretos, sublinhando a importância da sua dimensão cultural.

O ensino de matemática pautado em uma perspectiva axiomática e dedutiva, sem história e sem qualquer relação com a realidade não é mais do que uma opção cultural, entre outras formas tanto ou mais legítimas de encarar esta ciência.

Em tempos idos, a matemática surgiu caracterizada como a ciência do número e da forma. Depois, foi encarada como a ciência das estruturas. Atualmente, é vista por muitos como a ciência dos padrões e das regularidades. A sua evolução é permanente.

Para os egípcios e os babilônicos, a matemática tinha feição, sobretudo utilitária, tal como hoje em dia acontece para muitos grupos sociais, como os artesãos, os pescadores e os vendedores ambulantes.

Para os gregos, ela assumiu o papel de um jogo intelectual, apresentando-se como o grande paradigma de uma argumentação bem conduzida. Para os matemáticos europeus dos séculos XVIII e XIX, constituiu uma linguagem indispensável para descrever o mundo físico e os fenômenos naturais.

Os alunos da EJA, muitas vezes, creem que a Matemática seja uma ciência exata, pronta, acabada e de alto grau de complexidade; uma leitura marcada, sem dúvida, pelo processo de exclusão que sofreram durante os anos de escola regular. Por isso, ao pensar um processo de ensino para essa modalidade, é necessário considerar as dimensões culturais do conhecimento matemático.

Bishop (1999) critica que as sequências cuidadosamente elaboradas de um livro de texto façam suposições sobre um aluno “generalizado”, que não é uma pessoa real. Considera que a matemática que se ensina está desumanizada, despersonalizada e descontextualizada; para que ela conserve sua “pureza”, são eliminadas todas as referências a valores e outros aspectos relacionados com a cultura. Ele defende que o ensino seja individualizador e personalizador. Embora seja complexo, na realidade atual, trabalhar dessa forma, vale lembrar que as questões culturais influenciam a leitura de mundo das pessoas e a forma como elas compreendem os conceitos emergentes das diversas áreas do conhecimento.

Assim, no que diz respeito às dimensões culturais, qualquer currículo envolve sempre diversas opções no modo como valoriza (ou não) a perspectiva histórica e as
aplicações desta ciência, levando os alunos a compreender o seu papel na sociedade, e na forma como relaciona (ou não) a abordagem própria de cada país (e de cada comunidade) com a matemática universalizada em permanente desenvolvimento pela comunidade de investigação.

3.1.2 Dimensão social

O conhecimento matemático forma-se socialmente, através de relações de interação e comunicação entre as pessoas e é exteriorizado publicamente (pelo menos em grande parte).

A matemática é a linguagem essencial do desenvolvimento científico e tecnológico, mas, hoje em dia, surge em todas as esferas da atividade da sociedade, constituindo o que alguns autores chamam uma “cultura invisível”.

A matemática permite comunicar, interpretar, prever e conjecturar. Dota a informação de objetividade e transforma-a em conhecimento fundamentado. A sociologia do conhecimento estabelece que as representações matemáticas, como de resto todas as representações científicas, são construções sociais. A perspectiva da construção social é a raiz do conhecimento, da cognição e das representações nos campos sociais da sua produção, distribuição e utilização.

O conhecimento matemático, como todas as formas de conhecimento, representa as experiências materiais das pessoas que interagem em contextos particulares, em certas culturas e períodos históricos. Tendo em conta essa dimensão social, o sistema educativo — e em particular o sistema escolar — estabelece uma variedade de interações com a comunidade matemática, já que se ocupa em garantir que as novas gerações sejam introduzidas aos recursos matemáticos utilizados socialmente e na rede de significados (ou na visão do mundo) em que se encontram situados; isto é, organiza um modo de prática matemática (RICO, 1997).

As finalidades de natureza social atribuídas ao ensino da matemática incluem a qualificação profissional indispensável para atender às necessidades do mercado de trabalho, bem como às necessidades de funcionamento da sociedade atual. Outra finalidade importante, também de natureza social, é proporcionar ao cidadão comum as ferramentas matemáticas básicas para o seu desempenho social.
3.1.3. Dimensão formativa

Os sistemas educativos, como instituições sociais, devem contemplar a satisfação adequada das necessidades individuais, incluindo o desenvolvimento integral dos indivíduos.

Através da educação, pretende-se que todos os jovens desenvolvam a adequada compreensão da matemática e do modo como ela pode ser usada nos mais diversos contextos. Isto implica a aquisição tanto de conhecimentos e destrezas como também — o que é extremamente importante — o desenvolvimento de diversas capacidades, atitudes e valores.

O ensino da matemática começou por ter função meramente instructiva, em que se privilegiava a memorização de fatos e a exercitação de procedimentos e técnicas de cálculo. Viria depois a assumir função formativa mais ampla, considerando o conhecimento matemático estreitamente ligado ao mundo da cultura e aos interesses, preferências e inclinações dos indivíduos. Desse modo, passou a haver uma preocupação em estimular a criatividade, a intuição e o pensamento divergente dos alunos e em promover valores e atitudes positivas em relação à matemática.

Os valores formativos desta disciplina envolvem aspectos cognitivos, metacognitivos e afetivos. Incluem as capacidades de raciocinar matematicamente, relacionar conceitos, usar definições, fazer demonstrações e resolver problemas, mas também construir e aperfeiçoar modelos matemáticos e discutir a aplicação desta ciência a situações de outras ciências ou da vida quotidiana.

Incluem, igualmente, a capacidade de comunicar e interpretar ideias matemáticas expressas oralmente e por escrito e, ademais, o desenvolvimento no aluno do seu próprio autocontrole e autoconceito como pessoa capaz de usar com desembaraço as ferramentas e as ideias matemáticas, estabelecendo uma relação positiva com esta disciplina.

Considerando a matemática como elemento dinâmico da cultura da sociedade atual, deixa-se de concebê-la como objeto já construído que é preciso aprender e passa-se a considerá-la como forma de pensamento aberto, cujo domínio deve ser desenvolvido em todos os alunos, respeitando a autonomia destes e o seu ritmo próprio de aprendizagem.
3.1.4 Dimensão política

A matemática tem, na sociedade atual, papel bem visível de seleção. E tem outros papéis, talvez menos visíveis, de uma linguagem de comunicação indireta de determinados valores e atitudes. O ensino da matemática, conforme o modo como for conduzido, pode contribuir para a democratização e a promoção de valores sociais de cultura, tolerância e solidariedade ou servir para reforçar mecanismos de competitividade e de seleção social.

O desempenho em matemática tem constituído critério decisivo para selecionar os alunos, especialmente no que se refere ao acesso às profissões de natureza técnica e científica. Aqueles que não apresentam bons resultados nesta disciplina desencorajam-se de enveredar por uma profissão como engenharia ou relacionada à área das ciências da natureza. Implicitamente, a matemática leva muitos alunos a definirem-se em termos de carreiras profissionais.

O ensino da matemática tem propiciado mecanismos de aquisição de valores sociais para a esfera dos comportamentos individuais, contribuindo para ajustar a conduta humana a determinados modos de racionalidade, dominantes na sociedade.

Mas este ensino pode ser orientado para promover a difusão de valores democráticos e de integração social, como a capacidade de cooperação, a atividade crítica e a ação comunicativa. Trata-se, assim, de elementos importantes que devem ser tidos em conta na elaboração do currículo.

Uma escola orientada para a consecução de valores democráticos ao lado dos valores formativos de cunho individual deve dar ênfase ao conhecimento crítico de todo o sistema matemático e das suas relações com a cultura e a sociedade.

A orientação crítica deve estar presente nas finalidades gerais do currículo da matemática escolar. Por isso, entre as finalidades do ensino desta disciplina pode-se encontrar explicitamente a promoção de valores éticos e democráticos, que constituem um aspecto essencial da sua dimensão política.
ORIENTAÇÕES DIDÁTICAS PARA EJA
Matemática

CIEJA Freguesia / Brasilândia
Foto: Neila Gomes
Acredita-se que os eixos matemáticos na EJA, embora comuns aos definidos para educação regular, devem ser abordados na perspectiva sociocultural. Ao considerar o *fazer matemático* dos jovens e adultos como ponto de partida das atividades de ensino, pode-se contribuir para a construção e recriação de conceitos, procedimentos e atitudes matemáticos.

Vale lembrar que, embora o pensamento informal ou de senso comum se desenvolva, de modo geral, antes do pensamento científico, ele não é necessariamente uma ferramenta menos efetiva ou poderosa para resolver um problema.

Se diferentes ferramentas matemáticas podem ser adquiridas em diferentes etapas de desenvolvimento, não há uma hierarquia inerente de uma ferramenta com relação ao poder e eficiência (SUTHERLAND, 2009). As formas iniciais do pensamento nem sempre são transformadas e incorporadas em formas posteriores; elas coexistem, não precisando ser substituídas e erradicadas.

Freire (1996) pondera que o homem é um ser inconcluso, e os professores devem estar completamente abertos para ser aprendizes dos alunos de EJA, para aprender pela experiência com eles, em uma relação educacional que é, em si mesma, informal.

Os conceitos matemáticos mais formais não se desenvolvem naturalmente a partir de conceitos cotidianos; eles requerem uma mudança qualitativa de foco. Ou seja, é preciso que a curiosidade ingênua, associada ao saber do senso comum e tratada criticamente, torne-se curiosidade epistemológica (FREIRE, 1996).

São quatro os eixos estruturantes do ensino de matemática:

1. Números e operações
2. Grandezas e medidas
3. Geometria
4. Análise de dados e probabilidade

O quadro a seguir apresenta o conteúdo essencial de cada eixo.
<table>
<thead>
<tr>
<th>NÚMEROS E OPERAÇÕES</th>
<th>GRANDEZAS E MEDIDAS</th>
<th>GEOMETRIA</th>
<th>ANÁLISE DE DADOS E PROBABILIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construção do conceito de número: classificação e seriação</td>
<td>• Tempo: calendário, relógio e relações com o sistema de numeração decimal</td>
<td>• Leitura de guias, plantas e mapas</td>
<td>• Probabilidade: experimentos e situações-problema</td>
</tr>
<tr>
<td>• Conjuntos numéricos: abordagem histórica</td>
<td>• Uso das medidas de tempo e conversões</td>
<td>• Explorar conceitos: direção e sentido; ângulo; paralelismo e perpendicularismo</td>
<td>• Estatística: problematização, coleta, organização, representação e análise de dados</td>
</tr>
<tr>
<td>• Números naturais, Inteiros, Racionais, Irracionais, Reais</td>
<td>• Temperatura: corporal e climática</td>
<td>• Figuras geométricas espaciais: cubo, paralelepípodo, prisma reto, pirâmide, cilindro, esfera e cone</td>
<td>• Medidas de posição e medidas de dispersão</td>
</tr>
<tr>
<td>• Algoritmos e operações</td>
<td>• Sistema monetário e sua relação com SND</td>
<td>• Trabalhando a relação de figuras espaciais e percepção espacial</td>
<td>• Análise combinatória: agrupamentos e problemas de contagem</td>
</tr>
<tr>
<td>• Cálculo mental e Estimativas</td>
<td>• Conversões e relação entre as principais moedas: real, dólar, euro, pesquisa de mercado</td>
<td>• Figuras geométricas planas: quadriláteros, triângulos, círculos e polígonos regulares</td>
<td>• Porcentagem, linguagem gráfica com análise quantitativa</td>
</tr>
<tr>
<td>• Números racionais (relação entre fracionários e decimais)</td>
<td>• Medidas de ângulos</td>
<td>• Classificação de triângulo quanto aos lados e ângulos</td>
<td></td>
</tr>
<tr>
<td>• Regra de três</td>
<td>• Medidas de comprimento</td>
<td>• Classificação de quadriláteros</td>
<td></td>
</tr>
<tr>
<td>• Juros simples e compostos</td>
<td>• Medidas de superfície</td>
<td>• Relações entre figuras espaciais e planas</td>
<td></td>
</tr>
<tr>
<td>• Expressar generalizações sobre propriedades das operações aritméticas</td>
<td>• Medidas de capacidade</td>
<td>• Ampliação e redução de figuras</td>
<td></td>
</tr>
<tr>
<td>• Traduzir informações contidas em tabelas e gráficos em linguagem algébrica e vice-versa</td>
<td>• Medidas de volume</td>
<td>• Decomposição e composição de figuras</td>
<td></td>
</tr>
<tr>
<td>• Utilizar letras como variáveis e incógnitas</td>
<td>• Raciocínio proporcional</td>
<td>• Semelhança: figuras planas, triângulos</td>
<td></td>
</tr>
<tr>
<td>• Equações de 1º e 2º graus</td>
<td>• Grandezas diretas e inversamente proporcionais</td>
<td>• Simetria</td>
<td></td>
</tr>
<tr>
<td>• Sistema de equações de 1º grau – com duas variáveis</td>
<td>• Razão entre áreas de figuras semelhantes</td>
<td>• Teorema de Tales</td>
<td></td>
</tr>
</tbody>
</table>
4.1 Números e Operações

A abordagem deste eixo deve considerar um processo pedagógico que tenha como foco o trabalho com base inicial nos conhecimentos prévios dos estudantes, buscando conexões para chegar ao conhecimento formal.

Neste eixo, é necessário proporcionar aos estudantes a decodificação das diversas linguagens nos diferentes contextos. Estabelecer relações entre as várias representações, utilizando o raciocínio proporcional, possibilita aos alunos fazer generalizações.

Devem-se considerar a resolução de problemas e as investigações como métodos de ensino, o que, por sua vez, requer que se leve em conta o contexto social e as relações de poder, permitindo ao aluno aplicar a sua aprendizagem criativamente, em uma nova situação.

Essa perspectiva considera que a educação trabalha a emancipação, e a educação matemática permite ao aluno fazer uma leitura de mundo argumentada com esses conceitos.

Neste eixo, é fundamental o foco nas estimativas e procedimentos de cálculo mental, sendo que este último deve estar atrelado ao uso da calculadora nas atividades de aprendizagem matemática. O estudo do sistema de numeração e das propriedades das operações fundamentais também deve permitir a exploração do uso da calculadora e a reflexão sobre fatos históricos.

Ressignificar a matemática é pensar a matemática dinamicamente, perceber a aula de matemática como solução de problemas investigativos, possibilitando ao estudante a elaboração de hipóteses, questionamentos e objetivos, interagindo em contextos particulares, em certas culturas e períodos históricos, gerando assim, sua independência social.

Ressignificar a matemática é também pensar em números e operações; quando o aluno faz o levantamento dos dados do problema e toma a decisão sobre quais operações deve usar, aí, então, ele está fazendo questionamentos que o levam à objetividade, interagindo em contextos particulares, em certas culturas e períodos históricos, gerando assim sua independência intelectual.

Em síntese, deve-se buscar a construção dos números no conhecimento historicamente constituído na história da matemática com as experiências vividas pelo aluno, considerando o tempo da organização do conhecimento e o tempo de que o aluno dispõe.
4.2 Medidas

O estudo das medidas na educação de jovens e adultos justifica-se pelas necessidades da vida cotidiana, de atividades de trabalho e, ainda, do desenvolvimento da tecnologia e da ciência.

Sem dúvida, realizar medições e ser capaz de manipular instrumentos de medida é fundamental a qualquer pessoa.

Medir é, essencialmente, comparar o tamanho, a capacidade, a massa dos objetos ou, a rigor, comparar grandezas.

Desde a Antiguidade, o homem teve a necessidade de medir e de criar instrumentos de medida. Cada sociedade, a partir de suas necessidades, criou seus padrões para medir. Muitas dessas sociedades utilizaram unidades de medidas originadas de partes do corpo humano (pé, polegada, palmo, cúbite, jarda, etc.).

Diversos grupos sociais usaram suas unidades, no início de forma arbitrária, pois variavam de pessoa para pessoa e de grupo para grupo, acabando por padronizar mais tarde, a partir da intensificação das relações sociais e econômicas; por exemplo, da expansão do comércio. As relações comerciais necessitavam de padronização devido aos conflitos criados a partir de unidades de medidas arbitrárias. Foi então que os burgueses revolucionários, com suas ideias de universalidade e luta por novos valores, criaram fundamentos que pudessem ser aplicados indistintamente a todos os homens.

A consolidação dos padrões universais de medidas ocorreu no fim do século XVIII com a Revolução Francesa. Foi neste contexto que o sistema métrico decimal foi criado.

Hoje, mesmo havendo um padrão internacional, no cotidiano conta-se com medidas que não fazem parte do sistema métrico decimal, como, por exemplo, polegadas, hectare, alqueire.

Nesse sentido, o saber escolar não deve negar o saber não sistematizado do aluno, mas trabalhar com ele como ponto de partida. O trabalho com medidas consiste em, a partir do conhecimento que o aluno demonstra, apresentar o sistema métrico decimal. Vale salientar o cuidado em utilizar, por exemplo, em transformações de unidades de medidas, situações que sejam significativas para a realidade de cada comunidade escolar.

Devem-se considerar as conexões deste eixo com a geometria. Por exemplo: o perímetro e a área são características mensuráveis de certas figuras geométricas; também convém atentar para o conceito de número, pois os números racionais, em suas representações decimais ou fracionárias, são usados para representar medidas.

Acredita-se que trabalhar a matemática de forma investigativa a partir de resolução de problemas pode possibilitar ao aluno da EJA o resgate do conhecimento construído ao longo de sua vivência, incorporando-o de um modo mais elaborado e formal.
O conhecimento sistematizado dos sistemas e das unidades de medidas se faz necessário nos dias atuais, para que as pessoas possam inserir-se em contextos diversos, em igualdade de condições, compreendendo e atuando de forma crítica na sociedade.

4.3 Geometria

O conhecimento matemático foi construído de acordo com as necessidades do homem, ligado e relacionado com outras áreas de conhecimento, delineando as ideias e ações em uma dinâmica constante entre o saber e o fazer.

Ao longo da história, o homem sempre esteve ligado à natureza e à sua forma. Basta olhar à volta para perceber a infinidade de coisas que têm formas geométricas. Observando essas formas e utilizando-se delas, foram produzidos conhecimentos geométricos, os quais foram geradores de conceitos e propriedades.

Ao ensinar geometria, devem-se levar em consideração os conhecimentos que o aluno traz de sua cultura, conhecimentos estes que podem ser tomados como ponto de partida para o ensino de conteúdos específicos.

O conhecimento, em constante construção, permite ao aluno explorar e utilizar o espaço em que vive, realizar operações e cálculos matemáticos, medir e resolver problemas no dia a dia, pensar, inovar e perceber a posição dos objetos nesse mesmo espaço, para, então, poder representá-los.

O estudo da geometria constitui um meio privilegiado de desenvolvimento da intuição e da visualização espacial. Para isso, deve-se propiciar ao aluno desenvolver o raciocínio visual, fazendo uso de diagramas e de modelos como modos de interpretação e de resolução de problemas.

O uso do material didático concreto pelos alunos é de fundamental importância para a melhor compreensão e percepção de determinadas relações observadas visualmente. Atroca de ideias, os questionamentos e as análises devem ser uma constante nessas aulas.

Porém, alguns cuidados devem ser tomados no uso de materiais; eles devem ajudar e facilitar a compreensão dos conteúdos, associando as relações vistas no concreto com a simbologia matemática, ampliando o grau de conhecimento.

Um trabalho importante é a planificação de figuras espaciais, que pode ser feito, por exemplo, montando e desmontando caixas e embalagens. Com o conceito de ângulo reto, por exemplo, pode-se chegar à classificação das figuras planas.

O ensino da geometria deve estar ligado ao cotidiano, à natureza e a todos os objetos criados pelo próprio homem, pois a geometria é uma ferramenta para a compreensão, descrição e inter-relação com o espaço em que se vive.
O processo de ensino e aprendizagem da geometria possibilita ao aluno realizar explorações e descobertas, propiciando diferentes formas de raciocínio. Além disso, a geometria desempenha um papel integrador entre os demais eixos (números e operações, medidas e análise de dados e probabilidade).

4.4 Análise de dados e probabilidade

O domínio sobre o conhecimento matemático que todos têm o direito de adquirir inclui conhecimentos sobre estatística e probabilidade, os quais constituem uma ferramenta imprescindível em diversos campos de atividade científica, profissional, política e social.

A capacidade das pessoas de interpretar grande quantidade de dados quantitativos adquire atualmente grande importância, visto ser fundamental para entender os julgamentos que os meios de comunicação social veiculam com base na estatística e nas probabilidades.

Em várias áreas de estudo, esses conhecimentos têm grande relevância. Por exemplo, para: analisar características genéticas ou um tratamento médico, fazer previsões sobre a evolução da população em determinada região, estudar a duração e a intensidade das chuvas, prever resultados eleitorais, analisar o índice de preços ao consumidor, etc.

A necessidade de decisão rápida em inúmeras circunstâncias da vida das pessoas exige um processo imediato de análise sobre as informações e dados presentes na sociedade contemporânea, o que é essencial para a tomada de decisão.

Dessa forma, este eixo visa fornecer subsídios ao aluno para que possa interpretar, compreender, analisar gráficos, tabelas que estão presentes nos meios de comunicação e no mundo do trabalho.

O aluno deve desenvolver atividades envolvendo os conceitos relacionados ao eixo de análise de dados e probabilidade para que, a partir desse conhecimento, possa construir, através de experimentos, as probabilidades de acontecer determinados eventos que interfiram no seu raciocínio, provocando mudanças comportamentais que propiciem melhora em sua qualidade de vida.

O desenvolvimento do raciocínio combinatorio, do pensamento probabilístico e estatístico é fundamental para o aluno da EJA, pois possibilita a compreensão do funcionamento da sociedade capitalista e tecnológica, que utiliza a representação de dados através de gráficos e tabelas.

O estudo dessas temáticas gera condições para que as pessoas possam entender sua realidade dentro do contexto social em que vivem como cidadãos.
ORIENTAÇÕES DIDÁTICAS PARA EJA
Matemática

CIEJA Freguesia / Brasilândia
Foto: Neila Gomes
5. EXPECTATIVAS DE APRENDIZAGEM

5.1 Etapa complementar

5.1.1 Números e operações

1. Compreender o sistema de numeração decimal, analisando a composição e decomposição de números, comparando, ordenando, lendo e escrevendo números naturais de qualquer ordem de grandeza.

2. Comparar o sistema de numeração decimal com sistemas de numeração, decimal e de outras bases, de civilizações antigas (egípcio, romano, chinês, maia, babilônicos).

3. Realizar cálculos, mentais ou escritos, exatos ou aproximados, envolvendo operações com números naturais.

4. Utilizar calculadora para realizar atividades de análise sobre propriedades matemáticas.

5. Compreender os conceitos de múltiplos e divisores.

6. Sistematizar a lógica do sistema de numeração decimal, estendendo-a aos números racionais na forma decimal.

7. Desenvolver os conceitos de número racional sobre a forma fracionária: relação parte/todo, quociente e razão.

8. Compreender o conceito de fração equivalente a uma fração dada.

10. Analisar, interpretar, formular e resolver situações-problema, compreendendo os diferentes significados das operações que envolvem números naturais e racionais.

11. Efetuar operações com números racionais, com compreensão dos processos neles envolvidos.

12. Demonstrar uso proficiente da calculadora, envolvendo cálculo com números decimais.

13. Compreender o conceito de número inteiro, referente ao conjunto Z.
14. Resolver situações-problema envolvendo números inteiros.
15. Saber operar com números do conjunto Z.
16. Reconhecer o conjunto Q. Localizar na reta numérica números racionais positivos e negativos.
17. Transformar números decimais na forma decimal para a forma fracionária, e vice-versa, incluindo-se dízimas periódicas.
18. Entender os conceitos de potenciação e radiciação.

5.1.2 Medidas

19. Reconhecer situações em que cabe a utilização de grandezas como comprimento, área, capacidade, volume, ângulo, tempo, temperatura, velocidade, massa e identificar unidades adequadas para medi-las. Utilizar a terminologia pertinente.
20. Resolver situações-problema, utilizando-se de medidas de grandeza como comprimento, área, capacidade, volume, ângulo, tempo, temperatura, velocidade e massa.

5.1.3 Geometria

21. Compreender um sistema de coordenadas cartesianas e aplicá-las na interpretação de problemas de localização.
22. Classificar figuras bidimensionais e tridimensionais segundo vários critérios.
23. Explorar as propriedades e relações das figuras bidimensionais e tridimensionais.
24. Ter noção de ângulo e aplicá-la a situações-problema.

5.1.4 Análise de dados e probabilidade

25. Ler e interpretar dados de vários tipos de tabelas e gráficos.
26. Elaborar textos que descrevam informações de tabelas e gráficos e vice-versa.

27. Adquirir o conceito de média aritmética e identificar situações em que seu uso é cabível e útil.

28. Compreender a “lei dos grandes números” que explica a pertinência das pesquisas de opinião.

5.2 Etapa final

5.2.1 Números e operações

1. Adquirir o conceito de número irracional.

2. Resolver problemas de contagem que envolvam o princípio multiplicativo, através de estratégias variadas, sem o uso de fórmulas.

3. Adquirir o conceito de proporção.

4. Resolver problemas que envolvam grandezas direta e inversamente proporcionais.

5. Resolver situações-problema envolvendo juros, através de estratégias variadas, incluindo o uso de calculadora.

6. Saber utilizar estratégias de resolução de equações e inequações de primeiro grau, inclusive sistema de 2 equações com 2 incógnitas.

7. Traduzir situações-problema em equações ou sistemas de equações de 1º grau ou inequações de 1º grau.

8. Saber calcular valor numérico de expressões algébricas, dados determinados valores para as variáveis.

9. Determinar valores de variáveis envolvidas em fórmulas, diante de valores dados, necessários para que esta determinação seja direta ou dependa da resolução de equação de 1º grau.

10. Saber utilizar estratégias de resolução de equações de segundo grau.
5.2.2 Geometria

11. Representar e interpretar o deslocamento de um ponto num plano cartesiano por segmento de reta orientado.

12. Classificar triângulos e quadriláteros, segundo suas propriedades.

13. Reconhecer círculo e circunferência, e seus respectivos elementos e propriedades.

14. Compreender a noção de semelhança de figuras planas e usá-la na resolução de situações-problema.

5.2.3 Medidas

15. Saber fazer conversões de unidades de medida de grandezas de diferentes tipos; por exemplo, grandezas orientadas por uma razão (densidade, velocidade) ou produto (KWh) de duas outras.

16. Cálculo de áreas de figuras planas por decomposição.

17. Realizar o cálculo do perímetro de uma circunferência, dado o seu raio; e o cálculo da área de um círculo, dado o seu raio.

18. Compreender contas de água e luz, interpretando as medidas envolvidas e as tabelas de tarifação.

5.2.4 Análise de dados e probabilidade

19. Ler e interpretar dados expressos em gráficos de coluna, de setores e outros.

20. Sintetizar informações em gráficos e estabelecer inferências a partir deles.

21. Compreender os conceitos de média, moda e mediana.

22. Interpretar dados de pesquisas de opinião e realizar inferências a partir deles.
ORIENTAÇÕES DIDÁTICAS PARA EJA
Matemática

CAPÍTULO 6
6. EXPLORAÇÕES DIDÁTICAS

O processo de ensino e aprendizagem da matemática em qualquer nível de ensino da educação básica deve considerar aspectos teórico-metodológicos pautados: na história da matemática, no processo de contextualizar e problematizar, na inserção da tecnologia, no processo de modelagem, na elaboração e desenvolvimento de projetos. Todos esses estão centrados nos procedimentos de leitura e escrita que devem gerar a comunicação nas aulas de matemática.

6.1. História da matemática e contextualização

A história da matemática deve fazer parte das aulas de matemática na EJA, para possibilitar aos estudantes o conhecimento sobre as contribuições da matemática para a compreensão e resolução de problemas do homem através dos tempos e das civilizações. É importante relacionar etapas da história da matemática com a evolução da humanidade.

A percepção do conhecimento matemático como tendo sido construído para e pelo homem na sua relação com o meio permite aos estudantes adquirir e compreender a matemática como uma ciência sócio-históricamente construída e sistematizada a partir de situações-problema as quais tiveram que ser solucionadas para melhoria da vida humana.

Além das relações históricas, o ensino da matemática deve atender ao contexto social, intelectual e tecnológico do aluno. Nesse sentido, o processo de contextualização histórica, social, tecnológica e/ou científica é essencial na constituição da aula de matemática. Contextualizar o ensino da matemática é respeitar os saberes, as vivências, as necessidades, bem como o meio social e cultural já internalizado pelos alunos, para construção do conhecimento, promovendo, dessa forma, uma aprendizagem matemática que lhes permita o estabelecimento de relações com as diversas áreas de conhecimento.

Trazer a história da matemática à sala de aula também é um elemento importante
no processo de atribuição de significado aos conceitos matemáticos, porém não se deve restringi-la à descrição de fatos ocorridos no passado ou à apresentação de biografias de matemáticos famosos. A recuperação do processo histórico de construção do conhecimento matemático deve aparecer como um importante elemento de contextualização dos objetos de conhecimento.

A história da matemática também pode contribuir para que o professor compreenda algumas dificuldades apresentadas pelos alunos, as quais podem refletir dificuldades históricas já percebidas no processo de apropriação do conhecimento matemático.

6.2. Resolução de problemas e aulas investigativas

A resolução de problemas é o princípio norteador da aprendizagem da matemática e pode possibilitar o desenvolvimento do trabalho com diferentes conteúdos em sala de aula.

Para isso, é preciso entender que problema não é um exercício de aplicação de conceitos recém-trabalhados, mas o desenvolvimento de uma situação que envolve interpretação e estabelecimento de uma estratégia para a resolução. Pozo (1998) considera que trabalhar problema em matemática significa colocar em ação certas capacidades de inferência e de raciocínio geral. A complexidade do mundo atual faz com que a solução de problemas seja uma ferramenta muito útil para analisar certas tarefas mais ou menos cotidianas, como, por exemplo, pedir empréstimo, analisar os resultados eleitorais, conferir rescisão de contrato, jogar na Sena ou tomar decisões no âmbito do consumo diário.

Acredita-se que não faz sentido trabalhar atividades envolvendo conceitos matemáticos que não estejam vinculados a uma problemática. Trabalhar conceitos matemáticos desvinculados de um contexto ou relacionados a situações muito distantes do estudante pode estimular a elaboração de um pensamento, mas não garante o desenvolvimento de sua criticidade.

O ensino da matemática tem como tradição a exatidão, o determinismo e o cálculo, opondo-se à exploração de situações que envolvam aproximação,
aleatoriedade e estimação, as quais podem limitar a visão matemática que o aluno poderá desenvolver, dificultando suas possibilidades de estabelecimento de estratégias para a resolução de problemas diversificados que lhe surgirão ao longo de sua vida. Um trabalho crítico e reflexivo, em Matemática, pode possibilitar ao estudante repensar seu modo de ver a vida, o que contribuirá para a formação de um cidadão mais líbero das armadilhas do consumo.

A atividade de resolução de problemas deve ser considerada a estaca central do processo de ensino e aprendizagem da matemática. Da mesma forma, as atividades de exploração e investigação podem auxiliar os alunos; e esse tipo de experiência matemática privilegia a aprendizagem matemática de todos, independentemente da condição social, pois confere poder epistemológico à generalização dos educandos (ERNEST, 1996).

As aulas exploratório-investigativas criam a base de sustentação para o desenvolvimento do processo indutivo, abdutivo e analógico em matemática (GOMES, 2007). O processo de investigar não quer dizer que seja necessário trabalhar problemas difíceis, mas sim envolver os alunos em situações nas quais eles possam observar e verificar regularidades, fazer comparações, formular hipóteses, testar e aperfeiçoar conjecturas, estabelecer relações e tirar conclusões, podendo, assim, compreender e sistematizar conceitos e propriedades matemáticas.

Ao preparar aulas centradas na investigação e na exploração, o professor deve apresentar propostas com foco no trabalho em grupo, considerando que o processo de interação é fundamental para a formulação de questões, para o levantamento e a organização dos dados, bem como para a elaboração e testes de conjecturas.

Um trabalho dessa natureza contribui para a formação do raciocínio e do pensamento matemático e favorece a comunicação, explicitação e argumentação de ideias, a socialização de estratégias procedimentais e de justificativas e provas.

6.3. Modelagem matemática e o trabalho com projetos

Em anos recentes, os estudos em Educação Matemática também têm posto
em evidência, como um caminho para trabalhar a matemática na escola, a ideia de modelagem matemática, que poderia ser vista como “a arte de transformar problemas da realidade em problemas matemáticos e resolvê-los interpretando suas soluções na linguagem do mundo real” (BASSANEZI, 2002, p. 16).

A modelagem matemática, percebida como estratégia de ensino, apresenta conexões com a ideia de resolução de problemas e atividades de investigação e exploração discutidas anteriormente. Diante de uma situação-problema decorrente do “mundo real”, imersa em certa complexidade, os alunos precisam mobilizar conhecimentos e habilidades que se constituem em:

• selecionar variáveis que serão relevantes para o modelo a construir;
• problematizar, ou seja, formular um problema teórico, na linguagem do campo matemático envolvido;
• formular hipóteses explicativas do fenômeno em causa;
• recorrer ao conhecimento matemático acumulado para a resolução do problema formulado, o que, muitas vezes, requer um trabalho de simplificação, pelo fato de que o modelo originalmente pensado pode revelar-se matematicamente muito complexo;
• validar, isto é, confrontar as conclusões teóricas com os dados empíricos existentes, o que, quase sempre, leva à necessidade de modificação do modelo, que é essencial para revelar o aspecto dinâmico da construção do conhecimento.

Articulado às ideias da modelagem matemática, destaca-se como estratégia de ensino o trabalho com projetos.

A palavra projeto é muito comum e, não raro, faz-se presente no dia a dia de todos. Ao consultar um dicionário, é possível constatar que ela significa plano de ação, esboço, roteiro para o projeto de vida, projeto de viagem, projeto político, projeto de orçamento, projeto de reflorestamento da Mata Atlântica...

Pensar o trabalho com projetos na EJA significa propiciar aos alunos o desenvolvimento de várias capacidades de natureza metacognitiva, como planejar, gerir e avaliar o próprio trabalho.

O trabalho com projeto implica articulação entre intenções e ações, o que depende do empenho dos envolvidos na construção de uma visão partilhada, pois tem a ver com um trabalho que se elabora em conjunto, que se enriquece com contribuições e atividades, por vezes, muito diversificadas, em que se reconhece
a importância de construção de saberes significativos e funcionais. Está associado a concepções de formação e educação que não se esgotam na acumulação de conhecimentos. Ele ainda requer: responsabilidade e autonomia daqueles que estão imersos no processo, para decidir e influenciar o seu desenvolvimento; autenticidade, quando de sua relevância e pertinência para a comunidade; complexidade, na medida em que integra dimensões diversas com o individual e coletivo, psicológico e sociocultural; criatividade de uma sequência de ideias novas que não emergem do nada, mas de uma combinação de ideias já conhecidas, num contexto novo; processo e produto, quando integra um tempo faseado, feito aos poucos, de forma espiralada, na proporção das ações e modificado de acordo com elas, para, daí, apresentar um produto dado a conhecer e que, ao ser compreendido e avaliado, pode dar origem a outras curiosidades, outras interrogações, outras situações reais e significativas.

O projeto é um plano de ação em que professores e alunos têm uma situação real ou um problema significativo a resolver. Diferencia-se de uma atividade isolada de ensino e aprendizagem pela intencionalidade que o orienta, pela organização, pelo tempo de realização e pelos efeitos que produz.

Dessa forma, o trabalho com projetos se justifica pela necessidade decorrente da intenção de que os alunos globalizem os conteúdos conceituais, atitudinais e procedimentais de todas as áreas do conhecimento humano. Um projeto deve considerar sempre o contexto social, com a função de favorecer não apenas a criação de estratégias de organização dos conhecimentos escolares em relação ao tratamento da informação, mas também a relação entre os diferentes conteúdos, em torno de problemas ou hipóteses que facilitem aos alunos a construção de seus conhecimentos e também a transformação da informação procedente dos diferentes saberes disciplinares em conhecimento próprio.

Um projeto pode emergir da definição de um conceito, de um problema mais geral ou particular, de uma temática ou de um conjunto de questões inter-relacionadas. Os projetos valorizam a aquisição de conhecimento e promovem uma maior participação do aluno nesse processo, levando-os a perceber sua grande responsabilidade no processo de ensino e aprendizagem.

Para desenvolver o trabalho com projetos, o professor deve estabelecer os objetivos educativos e de aprendizagem, selecionar os conteúdos conceituais e procedimentais a serem trabalhados, preestabelecer atividades, provocar reflexões, facilitar recursos,
materiais e informações, analisar o desenvolvimento individual de cada aluno.

Não se deve desconsiderar a complexidade envolvida em um projeto e as atividades de resolução de problemas, pois o objetivo central dele se constitui em um problema ou em uma fonte geradora de problemas.

O projeto escolar deve considerar o estudo de um tema que seja de interesse dos alunos, promovendo interação social, possibilitando que os estudantes percebam e reflitam sobre os problemas de sua realidade, aplicando conteúdos conceituais, procedimentais e atitudinais à sua vida e gerando condições distintas de ensino e aprendizagem.

Nesse sentido, o trabalho com projetos pode assumir um papel relevante no ensino e na aprendizagem da matemática, pois os alunos poderão construir e socializar conhecimentos relacionados a situações problemáticas significativas, considerando suas vivências, observações, experiências, inferências e interpretações.

Trabalhar com projetos pode possibilitar aos professores colocar em ação aulas investigativas, as quais permitem aos alunos romper com o estudo que se faz através de um currículo linear. Eles terão uma maior chance de ampliar seus raciocínios, rever suas concepções e superar suas dificuldades. Passarão a perceber a matemática como uma construção sócio-histórica, impregnada de valores que influenciam na vida humana; aprenderão a valorizar o processo de criação do saber e não um produto final, uma matemática pronta, acabada e sem significados.

6.4. Tecnologias

Educar em uma Sociedade da Informação é muito mais do que “treinar” pessoas no uso das novas tecnologias; trata-se de formar os indivíduos para “aprender a aprender”, de forma a prepará-los para a contínua e acelerada transformação do conhecimento tecnológico (MISKULIN, 1999).

As calculadoras, os computadores, a internet, os vídeos, os dvds... são tecnologias que assumem presença cada vez mais forte em nossa vida; por isso é preciso possibilitar aos estudantes da EJA adquirir habilidades sobre essas tecnologias para utilizar esse potencial eticamente e para valorizar a vida e o conhecimento.
A matemática pode ser considerada uma ferramenta para entender a tecnologia e a tecnologia pode ser uma ferramenta para entender a matemática. O uso da calculadora e do computador permite que se explore muito mais a resolução de problemas que envolvam dados reais e cálculos mais complexos. É importante ressaltar que o trabalho com estimativas prévias dos resultados e um desenvolvimento sistemático do cálculo mental são aspectos essenciais a serem abordados nas aulas de matemática em qualquer nível de ensino. Assim, o aluno não criará dependência da máquina para cálculos básicos e poderá perceber facilmente possíveis erros de digitação.

Há programas que permitem que os alunos façam experimentos, testem hipóteses, esbocem conjeturas e criem estratégias para resolver problemas. Para o ensino e aprendizado da Geometria, por exemplo, há os programas que dispõem da régua e compasso virtuais e de menu de construção em linguagem clássica da geometria, o que viabiliza trabalhar o significado dos conceitos e demonstrações de propriedades.

Da mesma forma, as planilhas eletrônicas oferecem um ambiente adequado para realizar experimentos com sequências e explorar algumas de suas propriedades; por exemplo, comparar o comportamento de uma sequência de pagamentos sob juros simples e juros compostos. Também oferecem um ambiente apropriado para trabalhar com análises de dados que são tomados de situações reais. É possível organizar atividades em que os alunos têm a oportunidade de lidar com as diversas etapas do trabalho de análise de dados reais: tabular, manipular, classificar, obter medidas estatísticas como média e desvio padrão e, também, representações gráficas variadas.

O uso de tecnologia para a aprendizagem em matemática é fundamental para que se obtenham melhores resultados no que se refere à solução de situações-problema que envolvam maior complexidade. Dessa forma, a escolha do programa a ser utilizado deve ser cuidadosa, para que ele permita aos estudantes da EJA o estabelecimento de estratégias para solucionar questões diversas.

As tecnologias da informação e comunicação pressupõem uma nova maneira de gerar e compreender o conhecimento matemático. Essa nova dimensão prioriza um novo conhecimento, que considera o desenvolvimento do pensamento criativo como aspecto fundamental da cognição humana. Assim, o professor assume um papel fundamental, na medida em que compatibiliza seu trabalho teórico-metodológico com as tecnologias de informação e comunicação, tomando-as partes integrantes da realidade do aluno.
6.5. Leitura e escrita

A sociedade contemporânea requer uma atenção particular ao processo de leitura e escrita, que não pode estar limitado às aulas de língua portuguesa na escola. Para Pimm (1999), a linguagem é um ponto central na educação, pois é através dela que se mantêm e reconhecem as identidades pessoais e sociais, visto que ela representa todas as formas de comunicação que o homem criou durante toda a sua existência e pode ser difundida através de sons, gestos, símbolos, palavras ou sinais.

No ensino e aprendizagem da matemática, os aspectos linguísticos precisam ser considerados inseparáveis dos aspectos conceituais para que a comunicação e, por extensão, a aprendizagem aconteçam (NACARATO; LOPES, 2005, p. 119).

A escrita matemática tem múltiplos objetivos no ensino da matemática. Primeiro, a escrita serve como uma forma de organizar as ideias para comunicar o pensamento matemático utilizado na resolução de um problema ou em uma atividade de ensino. Ao escrever, o aluno terá que ter clareza sobre com quem quer comunicar-se, pois a escrita terá características distintas, dependendo do público-alvo.

Percebe-se que a função de qualquer linguagem é a comunicação, e essa competência comunicativa inclui saber utilizar a língua para comunicar-se em diversas situações sociais.

A linguagem pode ser entendida como uma criação social que utiliza símbolos, também criados socialmente. A linguagem matemática é um sistema simbólico de caráter formal, cuja elaboração é indissociável do processo de construção do conhecimento matemático e tem como função principal converter conceitos matemáticos em objetos mais facilmente manipuláveis e calculáveis, possibilitando inferências, generalizações e novos cálculos que, de outro modo, seriam impossíveis (GRANELL, 1997, apud SANTOS, 2009, p. 117).
O domínio da linguagem matemática requer aprender a interpretar a escrita matemática formal. Isso exige que os alunos tenham a oportunidade de refletir sobre as diferenças entre uma leitura científica e uma leitura de literatura, jornal, revista, ou outros textos não científicos (D’AMBROSIO, 2009).

A leitura também é necessária quando os alunos leem as produções dos colegas. Em geral, a produção escrita é utilizada como apoio durante a socialização da solução de problemas e tarefas. A escrita é, assim, utilizada como registro de ideias e tem por objetivo comunicar ideias aos colegas no momento da socialização. Juntos, os colegas têm oportunidade de refinar a escrita, quando a leitura desta revela perguntas e sugestões para sua melhora. Há também que considerar a comunicação oral realizada pelos estudantes, pois, muitas vezes, há uma produção oral que revela importantes dados sobre os alunos. Na comunicação oral, eles utilizam uma linguagem natural e não formal que oferece um olhar mais profundo para o seu entender matemático. Sua facilidade para expressar-se com linguagem oral pode revelar um conhecer ainda não formalizado em linguagem mais simbólica.

Trabalhar a leitura e a escrita na aula de matemática requer pensar atividades de ensino que envolvam a organização de um portfólio com atividades relacionadas à leitura, à interpretação de textos e à produção textual e ligadas aos conteúdos matemáticos que foram estabelecidos durante a fase de planejamento no início do ano. Conforme Oliveira (2007), pode-se solicitar a elaboração de:

- Biografia matemática
- Abertura do tema
- Diário de bordo
- Glossário
- Respostas a questões, utilizando apenas a linguagem natural
- Resolução de exercícios em duas colunas, uma em linguagem matemática e outra em linguagem natural
- Leitura de textos paradidáticos, sobre a história da matemática e outros assuntos matemáticos, com respostas a questões dissertativas
- Leitura e interpretação de textos de outros contextos
• Pesquisa e produção de texto, mostrando a utilização da matemática em outras disciplinas

• Leitura e análise do jornal como recurso didático em matemática

• Mapas conceituais.

Esses pressupostos permitem que se afirme que o planejamento e a execução de um projeto com foco na leitura e na escrita levam a uma re-significação do conhecimento matemático por parte dos alunos que o desenvolveram.
ORIENTAÇÕES DIDÁTICAS PARA EJA
Matemática
7. FUNDAMENTOS E PRINCÍPIOS DA AVALIAÇÃO NA EJA

Celi Espasandin Lopes
Luiz Percival Leme Britto

Para alcançar os objetivos educacionais, é fundamental que se disponha, além de recursos e metodologias apropriadas, de um referencial de avaliação adequado.

A avaliação é instrumento fundamental na organização dos processos educacionais, no âmbito da sala de aula, da escola e do sistema de ensino. Bem realizada, contribui para a visualização crítica dos resultados das atividades vivenciadas e para a transparência aos envolvidos no processo.

Ela contribui tanto para a identificação dos conhecimentos e das aprendizagens dos estudantes, individualmente e em grupo, e para reajustes nas ações pedagógicas, como para mudanças nos currículos, nos conceitos e práticas formativos, nas formas de gestão e até nas configurações do sistema educativo.

O que se pode aprender pelas experiências permite acréscimos de eficácia e de eficiência a qualquer processo. Nesse sentido, a avaliação tem a ver com as transformações não somente da Educação, mas também da sociedade do presente e do futuro. Ela orienta as escolas na percepção das necessidades técnico-pedagógicas específicas, informando os agentes educativos sobre os níveis de consecução dos objetivos escolares nas escolas, para que atuem a favor da melhoria do ensino.

Conforme Dias Sobrinho (2009),

a avaliação e as transformações educacionais se interatuam, ou seja, a avaliação é um dos motores importantes de qualquer reforma ou modelação e, reciprocamente, toda mudança contextual produz alterações nos processos avaliativos. [Além disso], todas as transformações que ocorrem na educação e em sua avaliação fazem parte, de modo particular, porém, com enorme relevância, das complexas e profundas mudanças na sociedade, na economia e no mundo do conhecimento.

Tais contribuições são essenciais, permitindo ampla visão do sucesso das intervenções e a reflexão sobre as práticas. Auxiliam também para que as lições
aprendidas sejam incorporadas às atividades de acompanhamento e propiciam a formulação e a execução de novas intervenções.

As constatações, as recomendações e as lições aprendidas devem ser integradas no processo de tomada de decisões, nos seus diversos níveis, desde o político até o operacional.

7.1 Definição e limites da avaliação

Avaliação pode ser entendida, de forma genérica, como toda prática que, considerando um processo pedagógico, promova questionamentos sobre ele e sirva de base para a reflexão sobre o que se faz. Pode também apresentar um significado mais específico, que indique a relevância, a eficácia, a eficiência, o impacto e a sustentabilidade de um projeto pedagógico, caracterizando-se como a procura sistemática de resposta para as intervenções de desenvolvimento.

Nessa perspectiva, a avaliação é um processo tão sistemático e objetivo quanto possível, consistindo em apreciar um projeto, em desenvolvimento ou concluído, sua concepção, sua execução e seus resultados. Destina-se a determinar a relevância e o nível em que os objetivos foram alcançados, bem como a eficiência, a eficácia, o impacto e a sustentabilidade, em termos de desenvolvimento.

Embora avaliações e acompanhamentos sejam tarefas distintas, a ligação entre elas é estreita e complementar. O acompanhamento é uma tarefa importante no ciclo do projeto e fonte de informação para a avaliação. Cabe salientar que as duas funções preenchem objetivos diferentes e não podem ser tratadas como se fossem uma única e mesma coisa.

O acompanhamento implica observar e descrever o que existe, captando o que realmente acontece. É fundamentalmente um processo interno, realizado pelos responsáveis pelo ensino e pela aprendizagem. Deve ser um processo contínuo de coleta e análise de informação, para responder à gestão imediata das atividades que estão sendo realizadas.

Os indicadores e os métodos para verificar o progresso são normalmente incluídos na fase de concepção, mas, para serem efetivos, devem ser adequados ao
projeto educacional e compreendidos pelos participantes, de forma que haja dimensionamento apropriado da intervenção.

A avaliação pressupõe a identificação dos efeitos do que foi feito, seguida necessariamente da apreciação do seu valor. Preocupa-se com a relevância, a eficácia, a eficiência, o impacto e a sustentabilidade do que foi feito. Mais esporádica que o acompanhamento, é facilitada pelas informações e pelas análises do acompanhamento, mas utiliza fontes de informação suplementares.

Finalmente, ressalte-se que a avaliação deve promover a clarificação sobre os objetivos, melhorando a comunicação, aumentando o conhecimento e lançando as bases para as atividades de acompanhamento.

7.2 Finalidades e objetivos da avaliação

A avaliação tem os seguintes objetivos centrais:

• Compreender por que determinadas atividades foram mais ou menos bem-sucedidas, de forma a melhorar seu desempenho no futuro.

• Fornecer base objetiva para a prestação de contas aos principais detentores de interesse, ou seja, as pessoas afetadas pelas intervenções.

• Oferecer resultados que contribuam para a determinação dos recursos.

• Contribuir para a compreensão do processo de desenvolvimento de cada pessoa, aumentando o conhecimento sobre suas possibilidades e suas limitações.

• Estabelecer condições propícias para a atividade pedagógica, indicando possibilidades e necessidades.

• Ajustar e redefinir objetivos, metas, conteúdos e estratégias.

• Permitir o autoconhecimento e contribuir para que os envolvidos possam tomar decisões sobre sua aprendizagem.

• Alimentar a crítica e a autocrítica, de forma a permitir que os participantes possam interferir na dinâmica dos acontecimentos.

Essa visão mais ampla sobre os objetivos centrais de avaliação auxilia a pensar os objetivos específicos neste projeto de avaliação da EJA.
7.3 Critérios de avaliação

Os critérios básicos de qualquer avaliação são: relevância, eficácia, eficiência, impacto, comensurabilidade e sustentabilidade.

A relevância é a medida segundo a qual os objetivos de uma intervenção, durante o desenvolvimento do projeto, indicam as expectativas dos envolvidos, as necessidades sociais e políticas.

A eficácia fornece os objetivos da intervenção durante o desenvolvimento, ou que se espera que sejam alcançados.

A eficiência sinaliza sobre como os recursos, ao serem convertidos em resultados, viabilizam maior economia, seja de recursos materiais ou de tempo.

O impacto refere-se aos efeitos de longo prazo, positivos e negativos, gerados pela intervenção de desenvolvimento.

A comensurabilidade implica a possibilidade de estabelecer comparações de diferentes resultados e de constituir uma série histórica.

A sustentabilidade permite a continuação dos benefícios resultantes do processo de intervenção durante o desenvolvimento e após a sua conclusão.

Ao pensar na dimensão educacional da EJA, há que considerar que, nas últimas décadas, a avaliação tem assumido importância crescente. De fato, tem sido apontada por alguns setores da sociedade e por responsáveis pelas políticas públicas como a resposta a problemas das mais diversas ordens.

Contudo, compreendida como panaceia, a avaliação tende a trazer mais problemas que soluções. De fato, ela serve para identificar a origem dos problemas, mas não é sinônimo de resolução destes. Avaliar é importante, mas como meio privilegiado para melhor compreender a situação e poder intervir de forma fundamentada.

A avaliação não se restringe à coleta de informação. Incluindo-a, pressupõe a interpretação desses dados, a ação orientada por essa interpretação e uma produção de valores. Como atividade com múltiplas fases que se inter-relacionam, apresenta um elevado nível de complexidade.

Desenvolver a avaliação a serviço da melhoria daquilo que se busca avaliar é o grande desafio que se coloca, em particular, aos professores. Contudo, a avaliação sempre foi e continua a ser problemática. E isso diz respeito tanto aos jovens professores como âqueles com ampla experiência profissional.
Razões de ordens diversas podem ser apontadas para justificar tal afirmação, nomeadamente decorrentes:

(I) do âmbito social;

(II) do âmbito profissional;

(III) do seu significado; e

(IV) da sua natureza.

A essas razões, que permanecem ao longo do tempo, pode-se acrescentar outra, de caráter contextual, referente ao período de mudança curricular que atualmente se vive.

A grande visibilidade social que a avaliação tem no campo da educação é um dos aspectos que contribui para a complexidade das práticas avaliativas. Em geral, os estudantes questionam seus resultados escolares, seja por discordarem das notas atribuídas, seja por estranharem os procedimentos avaliativos. No entanto, raramente questionam sobre as metodologias no processo de ensino e aprendizagem.

As consequências de ordem social criam nos professores angústias e indecisões. Os resultados escolares dos alunos podem influenciar de forma determinante seu futuro, quer no prosseguimento de estudos, quer na sua vida cotidiana ou profissional.

Tendo plena consciência de que a avaliação é uma prática humana cujos resultados não são independentes de um conjunto de variáveis, no qual se inclui necessariamente o grupo ao qual pertence o aluno, decidir com segurança entre uma nota ou outra é, certamente, muito angustiante para o professor. A ausência de sentido da quantificação das aprendizagens, atribuindo certo valor em uma dada escala, associada à importância que tal decisão pode acarretar na vida do aluno é, sem sombra de dúvida, tarefa ingrata para o professor.

Considerando o papel social que a EJA tem tido nos últimos anos, destacando-se como a área do saber primordialmente usada como elemento de seleção, o que se expõe toma maior importância e significado.

O entendimento e o significado da avaliação constituem um campo gerador de dificuldades. Tradicionalmente, no passado, o indivíduo e o contexto eram vistos como entidades separadas. Acreditava-se, seguindo o paradigma positivista, ser possível criar procedimentos tecnicamente rigorosos que dariam origem a juízos objetivos. Atualmente, a avaliação é vista como processo de comunicação social, por meio do qual se atendem às diversas inter-relações presentes em cada ato avaliador.
O insucesso em uma tarefa não significa necessariamente falta de conhecimentos, mas, algumas vezes, dificuldades na comunicação. Quando o professor propõe uma tarefa ao aluno, este tem de ser capaz de interpretar o que o professor pretende e como quer vê-la respondida. O professor não é neutro, é um mediador entre a tarefa e o aluno. A tarefa é, assim, a expressão de uma perspectiva. Para ir ao encontro do que foi pedido, o aluno tem de ser capaz de descobrir o significado e o propósito da tarefa.

Perante este quadro de referência, cabe ao professor interpretar o significado da resposta do aluno. Caso esta não seja satisfatória, caberia indagar por que não: por ausência de conhecimentos? De habilidades? Por uma interpretação desviada do significado proposto pelo professor?

É necessário reforçar a importância da componente formativa da avaliação, preconizando o recurso a instrumentos alternativos de coleta de informação, propondo objetivos de aprendizagem de diversas áreas. Isso requer não apenas novas práticas avaliativas, mas, acima de tudo, o desenvolvimento de outro conceito de avaliação. Em outras palavras, requer uma nova cultura de avaliação.

Ressalte-se que, não obstante a avaliação, nos últimos tempos, tenha vindo a ganhar visibilidade, traduzindo o reconhecimento da importância desta área no processo de ensino e aprendizagem, ela segue sendo complexa e gerando muitos problemas aos professores e aos estudantes.

As mudanças não se fazem de uma só vez, mas por avanços e recuos. Todos os que passaram pela escola viveram a experiência de ser avaliados em contexto escolar, mesmo que em um passado longínquo, cuja realidade em nada é comparável com o presente, dadas suas diferenças marcantes.

7.4 Fundamentos do processo avaliativo

As avaliações devem ser úteis e reunir a informação necessária para todos os envolvidos no processo. Por isso, devem ser precisas e rigorosas:

- identificando e transmitindo informações válidas sobre o essencial do objeto que está a ser avaliado;
• refletindo os diferentes interesses e necessidades das partes envolvidas;
• apresentando, de forma clara e concisa, resultados relevantes e úteis para redimensionar o processo de ensino e aprendizagem;
• formulando recomendações úteis e pragmáticas e apresentando as lições aprendidas decorrentes do processo de avaliação;

Mais que estudos científicos, as avaliações precisam ser estudos orientados para a prática. Neste sentido, devem:
• estar previstas em um cronograma e realizar-se no momento oportuno para o processo de tomada de decisões;
• identificar e transmitir informação válida e segura sobre os fatos que determinam o valor e o mérito do objeto que está sendo avaliado, fornecendo clareza sobre os objetivos e as prioridades de intervenção;
• ser conduzidas de forma legal, ética e justa, velando pelo bem-estar e pelos direitos de todos os envolvidos no processo, bem como pelos que são afetados pelos seus resultados.

O objeto da avaliação não se limita ao conhecimento adquirido ou demonstrado por um aluno ou um conjunto de alunos. Para poder compreender o quanto e como uma pessoa ou um grupo de pessoas sabe determinadas coisas, há que indagar sobre as condições de possibilidade desse saber, bem como sobre o valor e a importância dos conteúdos sobre os quais se indaga.

Nesse sentido, são objetos necessários à avaliação de pessoas ou de sistema: as condições materiais de realização pedagógica; a densidade da formação docente; a dinâmica dos processos de ensino; os recursos didáticos; as formas de organização e administração da escola e dos sistemas escolares. Isso porque o saber demonstrado, se for o alvo imediato de uma avaliação, só se concretiza a partir das possibilidades de aprendizagem e de ensino que se manifestam no ambiente pedagógico, constituído pelos fatores assinalados.

A avaliação no percurso ocorre durante todo o processo pedagógico, mesmo quando elege momentos privilegiados para atividades dirigidas com esse fim específico. A avaliação de resultado se faz em momentos determinados, podendo ou não repetir-se em intervalos fixos.

O valor da avaliação está relacionado com a qualidade dos seus resultados. A
qualidade da avaliação mede-se não apenas pelas suas conclusões, pelas lições aprendidas e pelas recomendações, mas também pela forma como o avaliador chegou a elas. A qualidade depende da produção de resultados confiáveis e comensuráveis, adaptando procedimentos adequados às circunstâncias, aprofundando a análise dos fatos e aplicando métodos e técnicas rigorosas.

A avaliação pode ser uma boa contribuição para a tomada de decisões em relação ao ensino e à aprendizagem, na medida em que detentores de interesse (que não são apenas os que promovem a avaliação, mas também, e principalmente, os sujeitos afetados pelo processo) se percebem e se reveem nos resultados da avaliação. Se sua participação em todas as fases da avaliação for grande, as recomendações e as lições apreendidas serão frutíferas.

7.5 Imparcialidade e independência

A avaliação deve ser imparcial e independente do processo de tomada de decisões no nível político, nas instâncias de financiamento e de gestão. A imparcialidade e a objetividade contribuem para dar crédito à avaliação e a seus resultados e são conseguidas pelo respeito permanente dos princípios de independência, neutralidade, transparência e justiça durante todo o processo de avaliação.

A independência dá legitimidade à avaliação e reduz o potencial de conflitos de interesses que podem surgir, no nível tanto das decisões políticas quanto dos gestores.

A imparcialidade e a independência são conseguidas, separando, das atividades de planejamento, a função da avaliação, o que pode ser conseguido pela criação de um serviço responsável por esta.

A credibilidade da avaliação depende da formação, da experiência e da independência dos avaliadores, bem como do grau de transparência e abrangência do processo de avaliação. A credibilidade requer que a avaliação relate tanto os sucessos quanto as dificuldades.

A transparência do processo de avaliação é crucial para sua credibilidade e legitimidade. Para assegurar a transparência, o processo de avaliação deve ser o mais aberto possível, com ampla difusão dos resultados.
ORIENTAÇÕES DIDÁTICAS PARA EJA
Matemática

CIEJA Freguesia / Brasilândia
Foto: Neila Gomes
ORIENTAÇÕES DIDÁTICAS PARA EJA

CAPÍTULO 8
ORIENTAÇÕES DIDÁTICAS PARA EJA Matemática
8. Considerações Finais

O currículo de Matemática não se restringe apenas à programação de objetivos, metodologias, conteúdos e recomendações para avaliação. Ele inclui igualmente o plano de atividades investigativas, de resolução de problemas, de desenvolvimento de projetos e de uso de tecnologias, os quais envolvam os estudantes em um processo de aprendizagem matemática que parte do levantamento de conjecturas e leva a conclusões, após a validação de resultados.

Desse modo, a efetivação de um currículo envolve tanto a seleção de temas como a construção de experiências de aprendizagem para os alunos. O professor e os alunos são personagens centrais na interpretação, na elaboração e na reformulação do currículo, adaptando-o às situações concretas.

A EJA precisa garantir aos estudantes uma formação matemática que contribua para que adquiram a capacidade e o gosto de pensar matematicamente. No entanto, é preciso que os discentes da EJA re-signifiquem sua experiência escolar, tornando-a significativa. A metodologia de resolução de problemas, mais especificamente o processo das tarefas exploratório-investigativas, pode conseguir esse objetivo. Esse processo consiste em desenvolver a capacidade dos alunos de utilizar os processos próprios da investigação de um matemático, ou seja, generalizar, estudar casos particulares, modelar, simbolizar, comunicar, analisar, explorar, conjecturar e provar suas hipóteses, a fim de valorizar a aquisição de conhecimentos, aptidões, atitudes e valores.

A exploração de metodologias que privilegiam o ensino centrado na interação entre aluno-aluno e professor-aluno propicia indicar que aprender matemática é ir além da aprendizagem de conceitos, procedimentos e das suas aplicações.

O maior desafio centra-se em encontrar formas eficazes de articular a criatividade dos professores na construção de situações de ensino e aprendizagem adequadas, considerando-se os imperativos sociais de uma formação de base sólida para todos os alunos da EJA.
9. Referências

ORIENTAÇÕES DIDÁTICAS PARA EJA
Matemática
CIEJA Freguesia / Brasilândia
Foto: Neila Gomes
ORIENTAÇÕES DIDÁTICAS PARA EJA
Matemática

CAPÍTULO 10
10. Referências para trabalho didático e formação

10.1 Sites

Disponibiliza o download de softwares recreativos e também para estudos de geometria, gráficos e álgebra. Há ainda, artigos, sugestões de atividades e projetos dos alunos.

Instituto de Matemática – UNICAMP: http://www.ime.unicamp.br/educacao_matematica.html
Divulga eventos e socializa atividades e artigos produzidos pela comunidade universitária.

Divulga eventos e publicações na área de educação matemática.

Departamento de Matemática – Universidade de Coimbra – Portugal: http://www.uc.pt/
Site organizado com o objetivo de divulgar informações, textos, atividades e sugestões para o trabalho com ensino de Matemática.

Associação de Professores de Matemática (APM)– Portugal: http://www.apm.pt/
Divulgação de eventos e publicações na área.

Organizado para divulgar artigos e atividades produzidas por grupos de pesquisa da educação matemática portuguesa.

Grupo de Investigación sobre Educación Estadística - Departamento de Didáctica de la Matemática – Universidade de Granada: http://www.ugr.es/~batanero
Disponibiliza artigos em espanhol e inglês sobre estatística e probabilidade.

História da Matemática (em inglês): http://www-groups.dcs.st-and.ac.uk/history/
10.2. Recomendações Bibliográficas

10.2.1 Livros

Subsídia as discussões sobre o pensamento probabilístico e o movimento aleatório.

Auxilia a compreensão sobre o processo de modelagem matemática e sua utilização como estratégia de ensino.

Subsídia as reflexões docentes sobre os conceitos matemáticos e respectiva formalização.

Apresenta sugestões de atividades matemáticas e subsídia o estudo docente.

Traz relações teóricas que desencadeiam reflexões sobre ser educador matemático.

Subsídia a ampliação do conhecimento do professor sobre a filosofia e a história da ciência matemática.

Propicia reflexões sobre a prática docente.

Auxilia e amplia a compreensão sobre o trabalho com projetos.

Promove reflexões sobre as concepções dos processos avaliativos.

Contribui para a ampliação do conhecimento do professor sobre a história da matemática.

Subsídia o trabalho docente no que se refere ao processo de avaliar a aprendizagem matemática e os diferentes instrumentos a serem utilizados para isso.

Contribui para a ampliação do conhecimento do professor sobre a compreensão do que significa promover uma educação matemática crítica.

Contribui para a ampliação do conhecimento do professor sobre a história da matemática.

Subsídia a ação docente no que se refere à didática.

10.2.2 Periódicos

EDUCAÇÃO MATEMÁTICA EM REVISTA – publicação da Sociedade Brasileira de Educação Matemática/SBEM.
EDUCAÇÃO MATEMÁTICA PESQUISA – publicação do Programa de Estudos Pós-Graduados em Educação Matemática da PUC-SP.
REVISTA DO PROFESSOR DE MATEMÁTICA – publicação da Sociedade Brasileira de Matemática/SBM.
ZETETIKÉ – publicação do Círculo de Estudo, Memória e Pesquisa em Educação Matemática/CEMPEM.

10.3 Espaços para Formação Contínua

CAEM – Centro de Aperfeiçoamento do Ensino de Matemática
Instituto de Matemática e Estatística (IME) – USP
e-mail: caem@ime.usp.br
CEMPEM – Círculo de Estudo, Memória e Pesquisa em Educação Matemática
10.4 Indicações de cursos de Pós-Graduação

Tabela da CAPES – 2009 – Programas de Pós-Graduação em Ensino de Matemática

<table>
<thead>
<tr>
<th>PROGRAMA</th>
<th>INSTITUIÇÃO DE ENSINO SUPERIOR</th>
<th>UNIDADE FEDERATIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUCAÇÃO MATEMATICA</td>
<td>UNESP/RC</td>
<td>SP</td>
</tr>
<tr>
<td>EDUCAÇÃO MATEMATICA</td>
<td>PUC/SP</td>
<td>SP</td>
</tr>
<tr>
<td>EDUCAÇÃO MATEMATICA</td>
<td>UNIBAN</td>
<td>SP</td>
</tr>
<tr>
<td>ENSINO DE CIÊNCIAS E MATEMÁTICA</td>
<td>UNIC/SUL</td>
<td>SP</td>
</tr>
<tr>
<td>ENSINO DE CIÊNCIAS EXATAS</td>
<td>UFSCAR</td>
<td>SP</td>
</tr>
</tbody>
</table>